Filter Design Using Ansoft HFSS

Dr. Rui Zhang

Department of Electrical and Computer Engineering University of Waterloo Waterloo, Ontario, Canada N2L 3G1

Outline

Introduction

- Finite Element Method (FEM) Employed by HFSS
- Features of HFSS
- General Design Procedure
- Design Examples:
 - Eigen Mode: Dielectric Resonator
 - Driven Mode: Dielectric Resonator Filter
 Microstrip Line Structure

- The Ansoft High Frequency Structure Simulator (HFSS) is a full-wave electromagnetic (EM) software package for calculating the electromagnetic behavior of a 3-D structure.
- Using HFSS, you can compute:
 - Basic electromagnetic field quantities and, for open boundary problems, radiated near and far fields;
 - The eigenmodes, or resonances, of a structure;
 - Port characteristic impedances and propagation constants;
 - Generalized S-parameters and S-parameters renormalized to specific port impedance;

FEM

Waterloo

- FEM is a numerical method for solving Maxwell Equations.
- Meshing Scheme:
 - 2D-triangles
 - 3D-tetrahedra

The components of a field that are tangential to the edges of an element are explicitly stored at the vertices.

The component of a field that is tangential to the face of an element and normal to an edge is explicitly stored at the midpoint of selected edges.

The value of a vector field at an interior point is interpolated from the nodal values.

3

• Capabilities:

- Accurate full-wave EM simulation
- Import/export of 3D structures
- Automatic adaptive mesh generation and refinement
- Adaptive Lanczos-Padé Sweep for fast frequency sweeps
- Inclusion of skin effect, losses
- Direct and iterative matrix solvers
- Eigen mode matrix solver

Features of HFSS (cont.)

- Solution Data (Visualization):
 - S-, Y-, Z-parameter matrix (2D plot, Smith Chart)
 - Port characteristic impedance
 - Current, E-field, H-field (3D static and animated field plot in vector display or magnitude display)
 - Far-field calculation (2D, 3D, gain, radiation pattern)
 - Material losses, radiation losses

General Design Procedure

- Opening a HFSS Project
 - To open a new project in a HFSS window:
 Select File > New, select Project > Insert HFSS Design

Waterloo

- Solution Type
 - Driven Modal: S-matrix solutions will be expressed in terms of the incident and reflected powers of waveguide modes.
 - Driven Terminal: S-matrix solutions of multi-conductor transmission line ports will be expressed in terms of terminal voltages and currents.

University of

- **Eigen Mode**: finding the resonant frequencies of the structure and the fields at those resonant frequencies.
- To Set the Solution Type
 Select HFSS > Solution Type

		-	_
	C D:		
		n Modal	
	O Drive	n Terminal	
	Eigen	mode	
	ОК	Cancel	

Parametric Model Creation

Defining Variables

Name	Value	Unit	Evaluat	ed Value	
Command	CreateCylinder				
Coordinate System	Global				
Center Position	0 ,0 ,20.32	mm	0mm , 0mm	, 20.32mm	
Axis	Z				
Radius	D1/2	mm	14.935mm		
Height	12.21	mm	12.21mm		
•	m		Add Varia	ble	_
		44	Name Value D	D1 29.87mm Pefine variable value	ue with units: "1 mm"
				OK	Cancel

Variable Settings

• Checking and Modifying Dimensions in 3D Modeler Tree

Assigning Materials

• Properties of the Objects

23

Descri

Cancel

Unit

Evaluated Value

Show Hidden

OK

- Common Boundary Conditions
 - Material properties
 - Boundary between two dielectrics
 - Finite conductivity of a conductor
 - Surface approximations
 - Perfect electric or magnetic surfaces
 - Radiation surfaces
 - Symmetry planes
 - Background or outer surfaces
 - Excitations (Driven mode)
 - Wave ports (External)
 - Lumped ports (Internal)

Assigning Boundaries

Copy To Clipboard

 Analysis Setup 	Solution Setup
ResonFilterEigenmode0 - HFSSDesign1 - 3D Modeler - SOLVED - [4PoleDielecticResonFilterEigenmode0 - HF	General Options Advanced Defaults
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Setup Name: Setup4
Validation Check Analyze All Analyze All Edit Notes Z	Minimum Frequency: 0.1 GHz Number of Modes: 10
Image: Materia Image: M	Adaptive Solutions
Cyl Boundaries	Maximum Delta Frequency Per Pass: 0.1 %
Image: Second secon	Solution Setup General Options Advanced Defaults
Image: Coordinate Global Results Revert to Initial Mesh Image: Global Fields Apply Mesh Operations	Initial Mesh Options ↓ Do Lambda Refinement
Global: Boundary Display (Solver View) Clear Linked Data	Target: 0.2 Use free space lambda
Lists	Adaptive Options Maximum Refinement Per Pass: 20 % Maximum Refinement: 100000
	Minimum Number of Passes: 1 Minimum Converged Passes: 1
University of Waterloo	Solution Options

- Adaptive Meshing
 - The mesh in HFSS is automatically constructed and tuned to give the most accurate and efficient mesh possible.
 - The adaptive meshing algorithm searches for the largest gradients in the E-field or error and sub-divides the mesh in those regions. It also targets singularities, such as the edge of a conductor, as locations to add extra elements.
 - The mesh growth for each adaptive pass is controlled by the Tetrahedron Refinement in percentage, which ensures that between each pass the mesh is sufficiently perturbed and guarantees the correct convergences.
 - After the mesh has been refined, a full solution is performed and the process is repeated until convergence.

- Convergence
 - After each adaptive pass, HFSS compares the results (Frequencies for eigen mode, S-Parameters for driven mode) from the current mesh to the results of the previous mesh. If the answers have not changed by the user defined value or Delta Freq (for eigen mode)/Delta S (for driven mode), then the solution has converged and the current or previous mesh can be used to perform a frequency sweep (for driven mode).
 - If the solution has converged, then technically, the previous mesh is as good as the current mesh. In this case, HFSS will use the previous mesh (less than current mesh) to perform frequency sweeps (for driven mode) if they have been requested.

Design Examples (Eigen mode: DR) cont. 🖃 🖅 🕨 Validation Check and ÷. 🗲 s HFSSDesign 1* ė. 🗲 🗸 **Starting Analysis** Model Ė∾€ 👉 Boundaries 🗄 🖉 Cooi Excitations 3D Modeler HFSS Tools Window Help Mesh Operations 🛱 😂 Plan Solution Type... And Liete - **D** (Ŧ) Analysi Optime 🖉 Add Solution Setup... E List... o 💾 🔣 Validation Check... List... 🚝 Results 🔒 Analyze All 💼 Field O Analyze All Edit Notes... +... Definitions Revert to Initial Mesh Ma Apply Mesh - 1 4Pole Dielectic Reson Filter Eigenma 📕 sap ÷٦-X 🖶 🚜 HFSSDesign 1* 🖮 💋 vac Validation Check: 4PoleDielecticResonFilterEigenmode0 - HFSSDesign1 Clear Linked Model Ė--67 🚽 Boundaries 🛷 3D Model HFSSDesign1 toordi Excitations Boundaries and Excitations. 🗄 🕖 Planes Mesh Operations 🛷 Mesh Operations 🗄 🥔 Lists 🛷 Analysis Setup Analysis Validation Check completed. 🛷 Optimetrics 🔊 Setup 1 🛷 Radiation 🔊 Setup? Rename Optimetric: × Delete Results Field Over Properties... + Definitions Abort Close Analyze Revert to Initial Mesh University of Apply Mesh Operations Waterloo Enabled

		9 0			100000	Profile	convergence	Cigenmode Data	·		
and (Che	ckin	a S	olution F	Data		Number of Passe		Pass Number	# Tetrahedra	Max Delta Freq
		01111	90		din din		Completed 17		3	5/4	13.369
	[⊡	eDielecticR	sonFilter	5	n h	vlaximum 20 vlinimum 1		4	700	9.0673 0.4070
			HFSSDesign	1 🕀 🧭 Lists			Jau Dalta Fran 1	<u>م</u>	5	1120	3.4070 3.6449
		1	Model				viax Deita Freq. / Target 01	/6	7	1440	2.6443
			🚽 Boundar	es 📗			arget 0.1 Jurrent 2.0172		6	1443	0.01050
			😼 Excitatio	ns 📗						1000	1.0501
1.1.1.1.1.1.1.1			🖅 Mesh Op	erations		Vie	ew: 🖲 Table	C Plot	3	2242	1.3031
olutions: 4PoleDieleo	ticResonFi	÷.,	💇 Analysis						10	2700	0.07001
gn Variation: D1='29	.87mm' D2='		Optimetr	cs	='3.81mm'				12	3321 4004	0.27601
lation: Setup1			Results	Consta Dana d			NOT COM	NVERGED	12	4004 5000	0.10020
			Field (Create <u>R</u> eport	=>	- 0	Consecutive Dee		13	0023	0.13233
file Convergence E	igenmode D	÷	Definitions 4	Solution Data		Т	arriet 1	363	14	0243 7010	2.0070
]			Output <u>V</u> ariables			Current 0		10	7010 0770	1.3370
Task	Real Time	CPU Time	Memory	Infor	mation ^	Profile	e Converge	nce Eigenmod	e Data	11200	2.1122
Adaptive Pass 17	00.00.00	00.00.01	40.014	Eigenmode Solution			.			11200	2.0172
mesnud_adapt_Fi	00:00:02	00:00:01	43.3 M	11206 tetrahedra		Solv	ved Modes				
Solver MBS	00:00:03	00:00:02	242 M	69948 matrix 153MB disk				-	(011.)		
eiaen	00:02:04	00:01:54	69 M	69948 matrix			Eigenmode	Frequency	(GHZ)		
adapt_part2_eigen	00:00:05	00:00:04	49.5 M	11206 tetrahedra			Mode 1	1.9017			
							Mode 2	2.2162	4.00E+001		
Adaptive Pass 18				Eigenmode Solution			Mode 3	2.3982	4 4 4		
mesh3d_adapt_FT	00:00:02	00:00:01	44.2 M	13286 tetrahedra			Mode 4	2 //15			
adapt_part1_eigen	00:00:04	00:00:03	81.4 M	13286 tetrahedra				2.4413	3.00E+001		
Total	00:12:09	00:10:20					Mode 5	2.4/14			
					E		Mode 6	2.4792	2.00E+001		
•							Mode 7	2.7758			
	honr	ovida	d for				Mode 8	2,9639	1.00E+001		
	ne hi	UVIUE		iussy case	University of	-	Mode 9	2 9052	1		
					Waterloo	_	Mode 5	2.3033	₽		
					valuitoo		I Mode 10	3 1033	0.00E+000	+++++++++++++++++++++++++++++++++++++++	╕╻╷╷╡╡╷╷╷╷╷╷╷

- -- 1

Pass Number

• 3D Model of the DR Filter

Port

- Excitation
 - Probe

The height of the cylinder is 0 = a sheet in a circular shape

r	Wave Port	×
	General Modes Post Processing Defaults	
\mathbf{F}	Name: WavePort1	
10	Wave Port	x
D	General Modes Post Processing Defaults	
A	Number of Modes:	
\mathcal{N}	Mode Integration Line Characteristic Impedance (Zo)	
	1 None Zpi	
$\mathbf{f} \propto \mathbf{s}$	Wave Port	x
	General Modes Post Processing Defaults	
<u>S</u>	Post processing operations do not affect field plots.	
	Port Renormalization	1
	O Do Not Renormalize	
	Renormalize All Modes	
	Full Port Impedance: 50 Ohm 💌	
	C Renormalize Specific Modes Edit Mode Impedances	
	Deembed Settings	
	Deembed Distance: 0 mm 🖵	
University of Waterlo	Positive distance will deembed into the port.	

- Wave Port
 - HFSS assumes that the Wave Port is connected to a semi-infinite long waveguide that has the same cross-section and material properties as the port.
 - Wave ports calculate characteristic impedance, complex propagation constant, and generalized S-Parameters.
- Lumped Port
 - Lumped ports are similar to traditional wave ports, but can be located internally and have a complex user-defined impedance.

- Analysis Setup
 - Single Frequency

Solution Setup	
General Options Advanced Defaults	Solution Setup
Setup Name: Setup 1	General Options Advanced Defaults
Solution Frequency: 2 GHz –	Initial Mesh Options
Solve Ports Only	Do Lambda Refinement
Maximum Number of Passes: 9	Target: 0.3333 🔽 Use free space lambda
Convergence per pass	Adaptive Options
Maximum Delta S 0.01	Maximum Refinement Per Pass: 20 %
C Use Matrix Convergence Set Magnitude and Phase.	Maximum Refinement: 100000
	Minimum Number of Passes: 1
	Minimum Converged Passes: 1
	- Solution Options
	Use Low-Order Solution Basis
Wa	University of aterioo

35

 Analysis Setup (cont.) 	Edit Sweep	
	Sweep Name: Sweep1	
 Frequency Sweep 	Sweep Type DC Extrapolation Options	1
	Discrete Extrapolate to DC	
	C Fast Minimum Solved Frequency 0.1 GHz	
	Snap Magnitude to 0 or 1 at DC	
	Snapping Tolerance 0.01	
□	Setup Interpolation Convergence	1
	Max Solutions: 50 Time Domain Calculation	
⊕ Boundaries ⊕ Cyl_r_1	Error Tolerance: 0.5 %	
Mesh Operations		
⊡	Frequency Setup	1
Bename	Type: Linear Step	1
Port Field	Start 1.9 GHz Display >>	
Field Ove	Stop 1.94 GHz 💌	
Add Dependent Solve Setup	Step Size 0.001 GHz 💌	
	Save Fields (All Fraguencies)	

Solution Data

Solutions: 4PoleD	ielecticResonFilter2_	3 - HFSSDesig	gn1			Solutions: 4P
Design Variation: 12 Simulation: Se	21mm' Ls='20.32mm' 9 tup1	6='51.5mm' T='3	.81mm' TP='0.1	mm' W12='10.058m		Design Variation: Simulation:
Profile Convergence	e Matrix Data					Profile Conver
⊢ Number of Passe	8	Pass Number	# Tetrahedra	Max Mag. Delta S		☑ S Matrix
Completed 15		1	4925	N/A		🔲 Y Matrix 🛛
Maximum 15		2	5739	1.0365		🔲 Z Matrix
Minimum 1		3	6684	1.3885		Magnitude/P
🗖 Max Mag. Delta :	S	4	7814	0.7		ŕ
Target 0.01		5	9164	0.23503		
Current 0.02134	12	6	10781	0.2556		Freq
View: 💿 Table	C Plot	7	12725	0.066175		1.9 (GHz) Wa
		8	15054	0.13555		Wa
		9	17631	0.085955	🛞 Ex	port Network Data So
		10	20905	0.15014	0	C K HESS
NOT CO	NVERGED	11	24388	0.10422		
Consecutive Pas	ses	12	29028	1.4731		File name: 4P
Target 1		13	34572	0.11683		Save as type: To
Current 0		14	39563	0.0769	0	Browne Folderr Dat
		15	45270	0.021342		Pla Net MA

Port Field Display

Parametric Analysis	Add/Edit Sweep
• Talametric Analysis	Variable Descripti
David 2D Madalas [UECC] Tarala (Mindavid Uala	Variable D1 Variable D1 Varia
	C Single value
K Solution Lype	
$\Box \bigcirc \bigcirc \bigcirc \bigcirc \stackrel{\text{def}}{\longrightarrow} \blacksquare \sqsubseteq \text{Ist} \qquad \qquad \bullet \implies \forall XY$	✓ 3D C Linear count Add >>
D D D D D D D D D D D D D D D D D D D	
Analyze All	C Octave count
Defined Cyl. 3D Model Editor	Delete
Assign DC Thickness	Start: 29.8 mm -
Even Cyl Boundaries	Stop: 30
🗐 🖅 pec 🕴 Excitations	
🗈 🖅 sapphir Mesh Operations 🔹 🕨 🚬	Step: 0.01 mm 🔽 OK Cancel
🕀 🖅 vacuun 🛛 Analysis Setup 🔹 🕨 🖉	
Coordinate Optimetrics Analysis	netric
Eists Results	nization
Fields	Sweep Analysis
Radiation Market Sweet	p Definitions Table General Calculations Options
Boundary Display (Solver View) Opt S	nc # Variable Description Add
Design <u>P</u> roperties	D1 Linear Step from 29.8mm to 30mm, step=0.01mm
	Delete
	Waterloo

Optimization

Properties: 4PoleDielecticResonFilter2_3 -

	Setup Optimization					×
	Goals Variables Ge	neral Options				
	Optimizer: Quasi Newt	on	•			
HFSSDesign1	Max. No. of Iterations:	1000				
	Cost Function:					
	Solution	Calculation	Calc. Range	Condition	Goal	Weight
O Tuning	Setup1 : Sweep1	S11_opt	Freq(From 1.91GHz to 1.93GHz)	<=	[-20]	[1]
N : 171	Setup1 : Sweep1	S21_opt	Freq(Single value at 1.905GHz)	<=	[-40]	[1]
Nominal Value	Setup1:Sweep1	S21_opt	Freq(Single value at 1.935GHz)	<=	[-40]	[1]
7.84mm	Setup1 : LastAdaptive			=		
.204mm						
54mm						
9.87mm						
9.66mm						
.47mm						
4.22mm						
0.32mm	Add	Delete	Edit Calculation	Edit Cal. Ra	nge Edit	Goal/Weight
	Acceptable Cost: 0	Noise: 0.0	001		Show A	dvanced Option
					ОК	Cancel

C Va	lue Opt	imization	C Tuning	
	Name	Include	Nominal Value	ſ
	н		37.84mm	Ē
	G		0.254mm	Ī
	а		1.117mm	1
	b		2.54mm	
	D1	~	29.87mm	
	D2	~	29.66mm	
	d		7.47mm	,
	Ds		14.22mm	1
	Ls		20.32mm	

 Optimization (cont.) 	Edit Calculation Range
Output Variables Output Variables I S11_opt dB(S(WavePort1,WavePort1)) 2 S21_opt dB(S(WavePort1,WavePort1))	Edit Range Variable: Freq Add Image Start: 1.91GHz Delete Image Valid Variable Range Image Valid Variable Range Image Image <td< th=""></td<>
Name: Add Update Expression: Insert Quantity Into Expression Calculation Category: Quantity: Design: HFSSDesign1 Variables S[WavePort1] S[WavePort1]	Delete Goal Value /Weight Goal Value Type: Simple Numeric Valu Goal Value Goal Value Goal Value
Report Type: Modal Solution Data Solution: Setup1 : LastAdaptive Solution: Setup1 : LastAdaptive Solution: Setup1 : LastAdaptive	Cosh deriv exp im integ In log10 mag Total OK Cancel Help

Design Examples (Driven mode: MSL)

3D Model of the MSL

Design Examples (Driven mode: MSL)

Port Field Display

Design Examples (Driven mode: MSL)

