

PRODUCT DEVELOPMENT FOR OUT-OF-AUTOCLAVE (OOA) MANUFACTURE OF AEROSPACE STRUCTURES

> Steve Mortimer, Matthew J. Smith Hexcel Duxford, Cambridgeshire, UK

Elizabeth Olk Hexcel Dublin, California, USA

Overview

- Why use the OOA process ?
- Benchmarking of Existing Products
 - Matrices
 - Fabric styles
- Development of an OOA prepreg (M56)
 - Requirements
 - Processing
 - Performance
 - Demonstrator parts
- Next Generation Developments
- Summary

Why Out of Autoclave?

- Significant increase expected in composites used in aircraft manufacture over the coming years
 - Boeing 787
 - Airbus A350
- Autoclave capacity
- Ovens are lower capital investment
- The cost benefit to the customer ?
 - Materials and processes are the same
 - Reduced tooling costs
 - Lower temperature cure

Reliable inspection

Modern ultrasonic inspection methods can assure part quality

HÐ

OOA Development – Product Requirements

Acceptable Porosity Levels

- Secondary structure < 2%</p>
- Primary structure < 0.5 % ?</p>

Cure –ply thickness

Similar to Autoclave

Mechanical performance

Same as equivalent autoclave prepregs

Processing

- Good tack / handling
- Similar lay-up / bagging to standard prepregs
- Must be capable for automated process (ATL/AFP)

HEX

Product format

UD (134 – 268 gsm), woven (193PW-), RFI

M56 Product Development

Product

- Resin
- Reinforcement

Process

- Bagging
- Cure cycle
- Performance

M56: Product Forms

UD carbon tape:

M56/35%/UD134/AS7-12K M56/35%/UD268/IMA-12K M56/35%/UD268/AS7-12K M56/35%/UD268/IM7-12K Product forms can be tailored to suit ATL / AFP presentation

HEX

Woven Fabric

M56/40%/280H5/AS4-3K M56/40%/193PW/AS4-3K

Woven glass:

M56/37%/7581 (8 HS weave) M56/37%/120 (4 HS weave)

Bronze mesh

- M56/38%/BZ80 (80gsm Bronze mesh)

Products optimised to achieve comparable fibre volume to autoclave cure

HEXCE

M56 Processing: Bagging

Optimum OOA bagging – surface breathing to remove air

HEXC

Vacuum cycle adapted to part type Lower temperature 6 hours at 135°C cycle possible

HEXCE

M56 Processing: Typical OOA UD Laminate Quality

M56/35%/UD268/IMA-12K

HEXCE

Typical porosity < 0.3%

M56 - 80 Ply UD Laminate (20 mm Thickness)

HEXCE

Mechanical Performance

M56 mechanical data compared with 8552 autoclave prepreg UD prepreg, 35% resin content, 145 FAW IM7 fibre.

HEXC

Large mechanical database developed. Compares well with 8552 but a little lower in compression.

Challenges

- Low porosity
- Complex geometry
- Thin skin over core
- Surface finish
- Automated processes
 - ATL
 - AFP

Trials have covered several critical processes

HEXC

Demonstrator Parts -A320 Fillet Fairing

Materials

- M56/40%/280H5/AS4-3K
- 30mm HRH10 core

Feedback

- Complex shape
- Fully passed water leak test (3 ply skin)
- Minimal spring back

HEXC

Sealing of core with good finish particularly effective over complex shape.

Demonstrator parts – Surface finish

Materials: M56/40%/193PW/AS4-3K HRH10 25 mm core

Excellent surface finish without need for surfacing films allowing direct painting

Automated processing

>M56 UD tapes have successfully been used in ATL and AFP trials with several component manufacturers.

- Fully impregnated material is essential for success in automated processes.
- Surface breathing results in low porosity parts

HEXCE

268g FAW UD tapes successfully processed

M56/35%/UD268/AS7-12K

En

₹u¢

hin

Photo courtesy of GKN UK

HexPly® M56 was specifically designed for out-of-autoclave processing

- >Available with a variety of reinforcements
- Fully impregnated for ATL / AFP processing
- Handle as for 'autoclave' prepregs BUT cure under vacuum in an oven
- Suitable for aerospace quality sandwich panels and monolithic laminates
- Several demonstrator parts successfully manufactured
- ≻M56 material in qualification
- Next generation products under development

OOA processing can produce high quality parts and is gaining acceptance in aerospace

HEXC