Voltage and Current Division Rules

Objectives

- To apply the voltage and current division rules.

Voltage Division

For example, we know
$i=V_{\text {TOTAL }} /\left(R_{1}+R_{2}+R_{3}\right)$
so the voltage over the first resistor

is

$$
V_{1}=i R_{1}=R_{1} V_{\text {TOTAL }} /\left(R_{1}+R_{2}+R_{3}\right)
$$

$$
v_{1}=V \frac{R_{1}}{R_{1}+R_{2}+R_{3}}
$$

To find the voltage over an individual resistance in series, take the total series voltage and multiply by the individual resistance over the total resistance.

Example

determine the voltage across each resistor

Example

determine the voltage acros each resistor

Dr.-Eng. Hisham El-Sherif
Electronics and Electrical Engineering Department

Summary

-The source voltage v is divided among the resistors in direct proportion to their resistances
-the larger the resistance, the larger the voltage drop.
-This is called the principle of voltage division,

- In general

If a voltage divider has N resistors $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ in series with the source voltage v, the $n^{\text {th }}$ resistor $\left(R_{n}\right)$ will have a voltage drop of

Current Division

If we know the current flowing into two parallel resistors, we can find out how the current will divide up in one step.

$$
\begin{aligned}
& v=i \frac{R_{1} R_{2}}{R_{1}+R_{2}} \cdot \curvearrowleft R_{E q} \\
& i_{1}=\frac{v}{R_{1}}
\end{aligned}
$$

$$
i_{1}=\frac{1}{R_{1}}\left[i \frac{R_{1} R_{2}}{R_{1}+R_{2}}\right]
$$

$$
i_{1}=i \frac{R_{2}}{R_{1}+R_{2}}
$$

ELCT708: Electronics for Biotechnology

Note that this differs slightly from the voltage division formula for series resistors

$R_{2}=0$ implies that $i_{1}=0, i_{2}=i$.

Example

Find i_{1} and i_{2} in terms of i_{s}

$$
\begin{aligned}
& i_{s}=i_{1}+i_{2} \\
& v_{1}=\mathrm{v}_{2} \\
& i_{1} R_{1}=i_{2} R_{2} \\
& i_{2}=i_{1} \frac{R_{1}}{R_{2}} \Rightarrow i_{s}=i_{1}+i_{1} \frac{R_{1}}{R_{2}}=i_{1}\left(\frac{R_{2}+R_{1}}{R_{2}}\right) \\
& i_{1}=i_{s}\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \\
& i_{2}=i_{s} \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

Example

Use Voltage and current division rules to find V_{o} and i_{o}

$$
\frac{6 \cdot 3}{6+3}=2
$$

