Example: stock market

06 技術解説 三浦 - daido.co.jp

35 Technical Review Trend of Heat Resistant Alloys for Aero Engine ApplicationsNobuhiro MiuraSynopsis2012 5 17 Dr., Eng., National Defense Academy, School of Systems Engineering, Department of Mechanical Systems Engineering 1/3 Fig. 1 SFC Specific Fuel Consumption 5 6 SFC In recent years, with emission reduction of carbon dioxide and nitrogen oxide, higher output and effciency of civil aircraft engines are demanded. They have been done by improvement of thermal and propulsive efficiencies.

38 電気製鋼 第83巻1号 2012年 Table 1. Chemical compositions of single crystal Ni-based superalloys (wt%). いため,γ母相自体の融点を高くすることおよびγ’相

Tags:

  Single, Crystal, Superalloys, Single crystal

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of 06 技術解説 三浦 - daido.co.jp

1 35 Technical Review Trend of Heat Resistant Alloys for Aero Engine ApplicationsNobuhiro MiuraSynopsis2012 5 17 Dr., Eng., National Defense Academy, School of Systems Engineering, Department of Mechanical Systems Engineering 1/3 Fig. 1 SFC Specific Fuel Consumption 5 6 SFC In recent years, with emission reduction of carbon dioxide and nitrogen oxide, higher output and effciency of civil aircraft engines are demanded. They have been done by improvement of thermal and propulsive efficiencies.

2 The thermal efficiency of the aircraft engine strongly depends on the turbine inlet temperature (TIT). With an increase in TIT, hot section parts in the engines such as combustion chambers, turbine blades, nozzle guide vanes, discs and shafts are expected to endure higher temperatures. Ni-based superalloys have been used for the hot section parts because of their excellent high-temperature strength, ductility, thermal fatigue and oxidation resistance. Recent alloy design of Ni-based superalloys has focused on increasing the temperature capability through the addition of Rhenium and Ruthenium. For the next-generation engines, further lightweight of the heat-resistant alloys has been demanded and practical use of ceramics matrix composites is expected as materials beyond Ni-based superalloys . In this paper, the latest developing trend of the heat-resistant alloys is Ti 1 3 B787-8 20 % 4 50 % 83 1 2012 36 Fw Fw = Fn / W 5 Fw 1 W Fw W 6 7 1 5 o SFC o 3 Ni 3 1

3 TIT: Turbine Inlet Temperature TIT Fig. 2 TIT 8 TIT TIT SFC Fig. 3 TIT 9 10 1950 TIT 900 C TIT 10 C 1600 C TIT 2000 C 11 TIT 2 1930 40 1 PWR Qf th th = PWR / Qf 1 2 Fn Va PWR p p = Fn Va / PWR 2 3 o o = th p 3 3 Fn SFC SFC = Wf / Fn 4 Wf SFC Fig.

4 1. Improvement of SFC of aero gas turbine 6 37 1 1 Ni Ni Ni TBC: Thermal Barrier Coarting 12 14 3 2 Ni Ni CC: Conventional Casting 1970 DS: Directional Solidification SC: single crystal Ni Ni3 Al Ti SEM Fig.

5 4 Fig. 2. Relation between pressure ratio and turbine inlet Fig. 4 SEM of as-heat treated single crystal Ni-based superalloy 3. Evolution of TIT of aero gas turbine engines. DS B Zr 83 1 2012 38 Table 1. Chemical compositions of single crystal Ni-based superalloys wt% .Table 1 Re 1970 DS 50 C PWA1480 Rene N4 CMSX-2 1 Re 1 Re 3wt% PWA1484 Rene N5 CMSX-4 2 2 1 25 C Re 5 6 wt% CMSX-10 ReneN6 3 1050 C Re Ru 2 3 wt% 4 GE SENCMA NIMS 15 4 Ru 1100 C 5 TMS-162 TMS-196 NIMS 16 18 393 3 Re Ru 17 19 Re

6 6 2011 6 3,000 4,000 kg Re Cu Mo 20 Cu Mo Re Ru GE 2 Ni ReneN5 Re wt% Rene N515 Rene N500 Rene N5 Rene N515 Re Fig. 5 21 B737 A320 CFM56 22 Fig. 6 2 CMSX-4 1273 K [001] Re NKH71 CMSX-4 160 MPa [001] 100 23 CMSX-4 24 NKH71 CMSX-4 CMSX-4 / Fig.

7 7 NKH71 / 4 TMS-138 Fig. 5. Comparison with creep rupture property of Rene N5 and Rene N51521 .Fig. 6. Stress-time to rupture curves of CMSX-4 and NKH71 at 1273 K. 83 1 2012 404 p Va BPR By-Pass Ratio BPR = Waf / Wap Waf Wap BPR 10 BPR SFC Re 15 BPR TIT Fig.

8 8 GE90-115B 25 B777-300ER GE90-115B GE IHI GE1014 B787 B747-8I GE GEnx 3 B787 TRENT1000 70 5 5 1 TiAl Fw Fig. 7. Dislocation substructure at / interface of creep interrupted specimens a CMSX-4 and b 8. Appearance of GE90-115B low pressure turbine 41 Ni GEnx 7 2 TiAl Fig.

9 9 26 TiAl Fig. 9. TiAl low pressure turbine Fig. 10. Appearance of CMC afterburner nozzle 5 2 Ni TIT Ni CMC: Ceramics Matrix Composite SiC Al2O3 SiC Ni 1/3 1200 C 3 1300 C 22 27 28 CMC Fig. 10 29 . 6 % NOx TIT NOx TIT 83 1 2012 42 NOx 1 3862 641 2007 213 56 2006

10 5884 #/Home5 7 2003 426 2004 1397 2005 7 2003 529 123 38 1997 24710 123 48 2007 36511 123 38 1997 15712 123 48 2007 33913 38 2010 14614 38 2010 15515 16 2011 71716 A. Sato H. Harada Yeh K. Kawagishi T. Kobayashi Y. Koizumi T. Yokokawa and J. X. Zhang : Superalloys2008 2008 13117 H. Harada 123 48 2007 35718 A. Sato Yeh T. Kobayashi T. Yokokawa H. Harada T. Murakumo and J. X. Zhang : Energy Materials 2 2007 1919 Tan Liu T. Jin Hu Hong Choi Kim and Jo : Mat. Sci. Eng. A 528 2011 838120 39 2011 23421 P.


Related search queries