Example: tourism industry

1. ラマン散乱 物質に入射,吸収された光は,物質と相互作用 …

1. 1) cm-1 Ei Es R Ei=Es h R + h 2.

A=248,B=0 10)やA=217.8,B=15.7 11)など様々な定数が提案され ている.A およびB の値は,液体中への孤立分散したSWNTや, バンドル構造12)をとっているもの,また基板と接触しているか など,様々な条件によって変化する. 2D-band のラマンシフト( 2D)は,D-band と同 …

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of 1. ラマン散乱 物質に入射,吸収された光は,物質と相互作用 …

1 1. 1) cm-1 Ei Es R Ei=Es h R + h 2.

2 Single-walled carbon nanotube SWNT 1 2) SWNT G-band 1590 cm-1 D-band 1300 cm-1 RBM radial breathing mode 100 350 cm-1 2D G -band 2700 cm-1 SWNT CVD 3 nm eV G D 2D-band G-band 6 D-band G-band D-band G/D SWNT multi-walled carbon nanotube MWNT G-band SWNT G-band 6 G G G G G G

3 SWNT G G = C/dt2 SWNT C = cm-1 nm2 SWNT C = cm-1 nm2 4) dt SWNT nm SWNT G-band SWNT SWNT SWNT G+ 6 LO G TO SWNT TO SWNT G+ TO G LO SWNT LO 5) SWNT G BWF Breit Wigner Fano 6) D-band 7) D-band D E D/ E=53 cm-1 eV-1 8) RBM SWNT RBM SWNT 9) RBM RBM cm-1 SWNT RBM=A/dt+B A B 50010001500100200300400 Raman Shift (cm 1)Intensity (arb.

4 Units)G+peakG-peakRBM peakRBM peakG-bandG-bandBWFD-bandD-band500100015 00100200300400 Raman Shift (cm 1)Intensity (arb. units)G+peakG-peakRBM peakRBM peakG-bandG-bandBWFD-bandD-band 1 SWNT nm A=248 B=0 10) A= B= 11) A B SWNT 12) 2D-band 2D D-band 7) 2D / E =106 cm-1 eV-1 2D-band SWNT MWNT 2D-band SWNT double-walled carbon nanotube DWNT 13) 14) 3. SWNT 12) SWNT van Hove SWNT SWNT Eii (n,m) SWNT Eii SWNT SWNT RBM 15) 2 SWNT SWNT (n,m)

5 2 11) RBM RBM (cm-1)= (nm)+ 2 S SWNT E11S E22S E33S M SWNT E11M SWNT 16) (n, m) 2n+m SWNT RBM 17) RBM (n,n) SWNT RBM (n,0) SWNT RBM SWNT =120 meV SWNT =60 meV 12 SWNT 2 1 2 1 RBM 100 230 cm-1 SWNT 240 290 cm-1 SWNT RBM RBM SWNT photoluminescence PL 18) PL SWNT (12,1)(11,0)(9,1)(7,5)(8,6)(7,6)(11,1)(8 ,7)(13,0)(9,8)(14,1)(10,0)(6,5)(6,4)(10, 1)(7,7)(12,0)(8,8)(9,9)(13,1)(15,0)(10,1 0)(6,6)(9,0)(9,1)(6,5)(7,5)(8,1)(6,4)

6 (16,1) (cm 1) (eV)(9,7)(14,0)(15,1)(17,0)(16,0)(17,1)( 10,8)(14,1)(13,0)(16,0)(17,1)(19,0)(10,6 )(18,1)(8,5)(9,3)2n+m=212n+m=242n+m=272n +m=192n+m=222n+m=202n+m=232n+m=25532 nm785 nm633 nm488 (12,1)(11,0)(9,1)(7,5)(8,6)(7,6)(11,1)(8 ,7)(13,0)(9,8)(14,1)(10,0)(6,5)(6,4)(10, 1)(7,7)(12,0)(8,8)(9,9)(13,1)(15,0)(10,1 0)(6,6)(9,0)(9,1)(6,5)(7,5)(8,1)(6,4)(16 ,1) (cm 1) (eV)(9,7)(14,0)(15,1)(17,0)(16,0)(17,1)( 10,8)(14,1)(13,0)(16,0)(17,1)(19,0)(10,6 )(18,1)(8,5)(9,3)2n+m=212n+m=242n+m=272n +m=192n+m=222n+m=202n+m=232n+m=25532 nm532 nm785 nm633 nm633 nm488 nm488 nmE11ME11ME22SE22SE11SE11SE33SE33SE44SE4 4S 2 SWNT RBM SWNT G-band SWNT G-band SWNT SWNT 19) 20) 4.

7 Is IAS IAS /IS=exp( h R/k T ) k T SWNT IAS /IS SWNT SWNT SWNT 21) SWNT SWNT 22) SWNT Eii 100 meV 23) 1) (1988) 2) A.

8 M. Rao, et al : Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275 187 (1997). 3) S. Maruyama, et al : Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical Physics Letters, 360, 229 (2002). 4) A. Jorio, et al : G-band resonant Raman study of 62 isolated single-wall carbon nanotubes, Physical Review B, 65, 155412 (2002). 5) H. Farhat, et al : Phonon Softening in Individual Metallic Carbon Nanotubes due to the Kohn Anomaly, Physical Review Letters, 99, 145506 (2007). 6) S. D. M. Brown, et al : Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Physical Review B, 63, 155414 (2001).

9 7) L. G. Cancado, et al : Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite, Physical Review B, 66, 035415 (2002). 8) R. Saito, et al : Probing phonon dispersion relations of graphite by double resonance Raman scattering, Physical Review Letters, 88, 027401 (2002). 9) R. Saito, et al : Raman intensity of single-wall carbon nanotubes, Physical Review B, 57, 4145 (1998). 10) A. Jorio, et al : Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Physical Review Letters, 86, 1118 (2001). 11) P. T. Araujo, et al : Third and fourth optical transitions in semiconducting carbon nanotubes, Physical Review Letters, 98, 067401 (2007).

10 12) C. Fantini, et al : Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects, Physical Review Letters, 93, 147406 (2004). 13) R. Pfeiffer R, et al : Resonance Raman scattering from phonon overtones in double-wall carbon nanotubes, Physical Review B, 71, 155409 (2005). 14) A. C. Ferrari, et al : Raman spectrum of graphene and graphene layers, Physical Review Letters, 97, 187401 (2006). 15) H. Kataura, et al : Optical properties of single-wall carbon nanotubes, Synthetic Metals, 103, 2555 (1999). 16) G. G. Samsonidze, et al : Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters, Applied Physics Letters, 85, 5703 (2004).


Related search queries