Example: stock market

5603 FM p1-15 - University of Cincinnati

Polymer Solutions: An Introduction to Physical properties . Iwao Teraoka Copyright 2002 John Wiley & Sons, Inc. ISBNs: 0-471-38929-3 (Hardback); 0-471-22451-0 (Electronic). POLYMER SOLUTIONS. POLYMER SOLUTIONS. An Introduction to Physical properties IWAO TERAOKA. Polytechnic University Brooklyn, New York A JOHN WILEY & SONS, INC., PUBLICATION. Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

POLYMER SOLUTIONS An Introduction to Physical Properties IWAO TERAOKA Polytechnic University Brooklyn, New York A JOHN WILEY & SONS, INC., PUBLICATION

Tags:

  Properties, 3650, 5603 fm p1 15

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of 5603 FM p1-15 - University of Cincinnati

1 Polymer Solutions: An Introduction to Physical properties . Iwao Teraoka Copyright 2002 John Wiley & Sons, Inc. ISBNs: 0-471-38929-3 (Hardback); 0-471-22451-0 (Electronic). POLYMER SOLUTIONS. POLYMER SOLUTIONS. An Introduction to Physical properties IWAO TERAOKA. Polytechnic University Brooklyn, New York A JOHN WILEY & SONS, INC., PUBLICATION. Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

2 Copyright 2002 by John Wiley & Sons, Inc., New York. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976. United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ This publication is designed to provide accurate and authoritative information in regard to the subject matter covered.

3 It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought. ISBN 0-471-22451-0. This title is also available in print as ISBN 0-471-38929-3. For more information about Wiley products, visit our web site at To my wife, Sadae CONTENTS. Preface xv 1 Models of Polymer Chains 1. Introduction 1. Chain Architecture 1. Models of a Linear Polymer Chain 2. Models in a Continuous Space 2. Models in a Discrete Space 4. Real Chains and Ideal Chains 5. Ideal Chains 7. Random Walk in One Dimension 7.

4 Random Walk 7. Mean Square Displacement 9. Step Motion 10. Normal Distribution 10. Random Walks in Two and Three Dimensions 12. Square Lattice 12. Lattice in Three Dimensions 13. Continuous Space 14. Dimensions of Random-Walk Chains 15. End-to-End Distance and Radius of Gyration 15. Dimensions of Ideal Chains 18. Dimensions of Chains with Short-Range Interactions 19. Problems 20. Gaussian Chain 23. What is a Gaussian Chain? 23. Gaussian Distribution 23. Contour Length 25. Dimension of a Gaussian Chain 25. Isotropic Dimension 25. Anisotropy 26. vii viii CONTENTS. Entropy Elasticity 28. Boltzmann Factor 28. Elasticity 30. Problems 31. Real Chains 33.

5 Excluded Volume 33. Excluded Volume of a Sphere 33. Excluded Volume in a Chain Molecule 34. Dimension of a Real Chain 36. Flory Exponent 36. Experimental Results 37. Self-Avoiding Walk 39. Problems 40. Semirigid Chains 41. Examples of Semirigid Chains 41. Wormlike Chain 43. Model 43. End-to-End Distance 44. Radius of Gyration 45. Estimation of Persistence Length 46. Problems 47. Branched Chains 49. Architecture of Branched Chains 49. Dimension of Branched Chains 50. Problems 52. Molecular Weight Distribution 55. Average Molecular Weights 55. Definitions of the Average Molecular Weights 55. Estimation of the Averages and the Distribution 57.

6 Typical Distributions 58. Poisson Distribution 58. Exponential Distribution 59. Log-Normal Distribution 60. Problems 62. Concentration Regimes 63. Concentration Regimes for Linear Flexible Polymers 63. Concentration Regimes for Rodlike Molecules 65. Problems 66. CONTENTS ix 2 Thermodynamics of Dilute Polymer Solutions 69. Polymer Solutions and Thermodynamics 69. Flory-Huggins Mean-Field Theory 70. Model 70. Lattice Chain Model 70. Entropy of Mixing 72. Parameter 72. Interaction Change Upon Mixing 74. Free Energy, Chemical Potentials, and Osmotic Pressure 75. General Formulas 75. Chemical Potential of a Polymer Chain in Solution 77. Dilute Solutions 77.

7 Mean-Field Theory 77. Virial Expansion 78. Coexistence Curve and Stability 80. Replacement Chemical Potential 80. Critical Point and Spinodal Line 81. Phase Separation 82. Phase Diagram 84. Polydisperse Polymer 87. Problems 89. Phase Diagram and Theta Solutions 99. Phase Diagram 99. Upper and Lower Critical Solution Temperatures 99. Experimental Methods 100. Theta Solutions 101. Theta Temperature 101. properties of Theta Solutions 103. Coil-Globule Transition 105. Solubility Parameter 107. Problems 108. Static Light Scattering 108. Sample Geometry in Light-Scattering Measurements 108. Scattering by a Small Particle 110. Scattering by a Polymer Chain 112.

8 Scattering by Many Polymer Chains 115. Correlation Function and Structure Factor 117. Correlation Function 117. Relationship Between the Correlation Function and Structure Factor 117. x CONTENTS. Examples in One Dimension 119. Structure Factor of a Polymer Chain 120. Low-Angle Scattering 120. Scattering by a Gaussian Chain 121. Scattering by a Real Chain 124. Form Factors 125. Light Scattering of a Polymer Solution 128. Scattering in a Solvent 128. Scattering by a Polymer Solution 129. Concentration Fluctuations 131. Light-Scattering Experiments 132. Zimm Plot 133. Measurement of dn/dc 135. Other Scattering Techniques 136. Small-Angle Neutron Scattering (SANS) 136.

9 Small-Angle X-Ray Scattering (SAXS) 139. Problems 139. Size Exclusion Chromatography and Confinement 148. Separation System 148. Plate Theory 150. Partitioning of Polymer with a Pore 151. Partition Coefficient 151. Confinement of a Gaussian Chain 153. Confinement of a Real Chain 156. Calibration of SEC 158. SEC With an On-Line Light-Scattering Detector 160. Problems 162. APPENDIXES. : Review of Thermodynamics for Colligative properties in Nonideal Solutions 164. Osmotic Pressure 164. Vapor Pressure Osmometry 164. : Another Approach to Thermodynamics of Polymer Solutions 165. : Correlation Function of a Gaussian Chain 166. 3 Dynamics of Dilute Polymer Solutions 167.

10 Dynamics of Polymer Solutions 167. Dynamic Light Scattering and Diffusion of Polymers 168. Measurement System and Autocorrelation Function 168. Measurement System 168. Autocorrelation Function 169. Photon Counting 170. CONTENTS xi Autocorrelation Function 170. Baseline Subtraction and Normalization 170. Electric-Field Autocorrelation Function 172. Dynamic Structure Factor of Suspended Particles 172. Autocorrelation of Scattered Field 172. Dynamic Structure Factor 174. Transition Probability 174. Diffusion of Particles 176. Brownian Motion 176. Diffusion Coefficient 177. Gaussian Transition Probability 178. Diffusion Equation 179. Concentration 179.


Related search queries