Example: quiz answers

Advanced Algebra - Department of Mathematics and ...

,withanappendix ElementaryComplexAnalysis AdvancedRealAnalysisAnthony W. KnappAdvanced AlgebraAlong with a Companion VolumeBasic AlgebraDigital Second Edition, 2016 Published by the AuthorEast Setauket, New , aknappTitle:BasicAlgebraCover:Constructi onofaregularheptadecagon,thestepsshownin colorsequence; (2010):15 01,20 01,13 01,12 01,16 01,08 01,18A05, ,ISBN-13978-0-8176-3248-9c auserBostonDigitalSecondEdition,nottobes old,noISBNc ,images,andotherdatacontainedinthisfile, whichisinportabledocumentformat(PDF),are proprietarytotheauthor,andtheauthorretai nsallrights,includingcopyright, ,trademarks,servicemarks,andsimilaritems ,eveniftheyarenotidentifiedassuch, userBoston,c/oSpringerScience+BusinessMe diaInc.,233 SpringStreet,NewYork,NY10013,USA, ,scholarship,andresearch,andforthesepurp osesonly, ,postitonline,andtransmititdigitallyforp urposesofeducation,scholarship, ( ,EPUB),theymaynoteditit, ,usersmustchargenofee, ,noextractsorquotationsfromthisfilemaybe usedthatdonotconsistofwholepagesunlesspe rmissionhasbeengrantedbytheauthor(andbyB irkh userBostonifappropriate).

INFINITE FIELD EXTENSIONS 403 1. Nullstellensatz 404 2. Transcendence Degree 408 3. Separable and Purely Inseparable Extensions 414 4. Krull Dimension 423 5. Nonsingular and Singular Points 428 6. Infinite Galois Groups 434 ... Algebra, and chapter-by-chapter information about prerequisites appears in the

Tags:

  Advanced, Algebra, Infinite, Advanced algebra

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Advanced Algebra - Department of Mathematics and ...

1 ,withanappendix ElementaryComplexAnalysis AdvancedRealAnalysisAnthony W. KnappAdvanced AlgebraAlong with a Companion VolumeBasic AlgebraDigital Second Edition, 2016 Published by the AuthorEast Setauket, New , aknappTitle:BasicAlgebraCover:Constructi onofaregularheptadecagon,thestepsshownin colorsequence; (2010):15 01,20 01,13 01,12 01,16 01,08 01,18A05, ,ISBN-13978-0-8176-3248-9c auserBostonDigitalSecondEdition,nottobes old,noISBNc ,images,andotherdatacontainedinthisfile, whichisinportabledocumentformat(PDF),are proprietarytotheauthor,andtheauthorretai nsallrights,includingcopyright, ,trademarks,servicemarks,andsimilaritems ,eveniftheyarenotidentifiedassuch, userBoston,c/oSpringerScience+BusinessMe diaInc.,233 SpringStreet,NewYork,NY10013,USA, ,scholarship,andresearch,andforthesepurp osesonly, ,postitonline,andtransmititdigitallyforp urposesofeducation,scholarship, ( ,EPUB),theymaynoteditit, ,usersmustchargenofee, ,noextractsorquotationsfromthisfilemaybe usedthatdonotconsistofwholepagesunlesspe rmissionhasbeengrantedbytheauthor(andbyB irkh userBostonifappropriate).

2 Thepermissiongrantedforuseofthewholefile andtheprohibitionagainstchargingfeesexte ndtoanypartialfilethatcontainsonlywholep agesfromthisfile, (andbyBirkh userBostonifappropriate).Inquiriesconcer ningprintcopiesofeithereditionshouldbedi rectedtoSpringerScience+ ,SarahandWilliam,andToMyAlgebraTeachers: RalphFox,JohnFraleigh,RobertGunning,John Kemeny,BertramKostant,RobertLanglands,Go roShimura,HaleTrotter, , +1and4n+ , (Continued) ,Polynomials, ,R, ,manyreadershavereactedtothebooksbysendi ngcomments,sugges-tions, , , ,theauthorgrantedapublishinglicensetoBir kh auserBostonthatwaslimitedtoprintmedia, ,andforeachbookaPDFfile,calledthe digitalsecondedition, ,thecorrectionofafewmisprints,onesmallam endmenttothe GuidefortheReader aboutChapterVII,someupdatestotheReferenc es, ,about2003,forBirkh , ,Birkh ausermathematicseditorinNewYorkasof2014, , , , ,Iplantopointtolistsofknowncorrectionsfr ommyownWebpage, ,whetherpureorapplied, ,itsuse, , ,includingnearlyallofBasicAlgebraandsome ofAdvancedAlgebra,correspondstonormalcou rsework.

3 Topicsbuildonthelinearalgebra,grouptheor y,factorizationofideals,struc-tureoffiel ds,Galoistheory,andelementarytheoryofmod ulesdevelopedinBasicAlgebra. Individualchapterstreatvarioustopicsinco mmutativeandnoncommutativealgebra,togeth erprovidingintroductionstothetheoryofass ociativealgebras,homologicalalgebra,alge braicnumbertheory,andalgebraicgeometry. Thetextemphasizesconnectionsbetweenalgeb raandotherbranchesofmath-ematics, ,itcarriesalongtwothemesfromBasicAlgebra :theanalogybetweenintegersandpolynomials inonevariableoverafield,andtherelationsh ipbetweennumbertheoryandgeometry. Severalsectionsintwochaptersintroducethe subjectofGr obnerbases,whichisthemoderngatewaytoward handlingsimultaneouspolynomialequationsi napplications. Thedevelopmentproceedsfromtheparticulart othegeneral, Morethan250problemsattheendsofchaptersil luminateaspectsofthetext,developrelatedt opics, HintsforSolutionsofProblems attheendofthebookgivesdetailedhintsformo stoftheproblems, ,grouptheory,ringsandmodules,uniquefacto rizationdomains,Dedekinddomains,fieldsan dalgebraicextensionfields, , , ,onenumber-theoryproblemalreadysolvedbyF ermatandEulerwastofindallpairs(x,y)ofint egerssatisfyingx2+y2=n, ,suchasy2=x3+.

4 Ifweregardeachequationasanexpressionsete qualto0, , ,particularlyinanalgebraicallyclosedfiel d, , ,knownastheBrauergroup, ,homologyandcohomologycanbeabstractedins uchawaythatthetheoryimpactsseveralfields simultaneously, ,algebraicgeometry, ,makesuseoftoolsfromanalysisconcerningco mpactnessandcompleteness,succeedsingivin gfullproofsofthethreetheoremsofChapterV, fromthealgebraicpointofviewofsimultaneou ssystemsofpolynomialequationsinseveralva riables,fromthenumber-theoreticpointofvi ewsuggestedbytheclassicaltheoryofRiemann surfaces, ,homologicalalgebrainChapterIV, ,and,asmentionedabove, ,someblocksofproblemsformadditionaltopic sthatcouldhavebeenincludedinthetextbutwe renot;theseblocksmayberegardedasoptional topics, , ,someareexamplesshowingthedegreetowhichh ypothesescanbestretched, , , ,propositions,lemmas, , , PROOF or PROOF ismatchedbyanoccurrenceattherightmargino fthesymbol ,andIamindebtedtoDavidKramer, , , , ,notnecessarilycommutative,andonechapter treatshomologicalalgebra.

5 Boththesetopicsplayaroleinalgebraicnumbe rtheoryandalgebraicgeometry, , , ,Zorn sLemma, IVofBasicAlgebraotherthantheSylowTheorem s,factsfromChapterVaboutdeterminantsandc haracteristicpolynomialsandminimalpolyno mials,simplepropertiesofmultilinearforms fromChapterVI,thedefinitionsandelementar ypropertiesofidealsandmodulesfromChapter VIII,theChineseRemainderTheoremandthethe oryofuniquefactorizationdomainsfromChapt erVIII, ,somesectionsofthebook,asindicatedbelow, ,uniformconvergence,differentialcalculus inseveralvariables, ,includingtheCauchyIntegralFormula,expan sionsinconvergentpowerseries, ,Euler,andLagrangetothealgebraicnumberth eoryofKummer,Dedekind,Kronecker,Hermite, sLawofQuadraticReciprocity,thetheoryofbi naryquadraticformsbegunbyGaussandcontinu edbyDirichlet,andDirichlet , ,whichoccurredlaterhistorically,anditant icipatesthedefinitionoftheclassnumberofa nalgebraicnumberfield, , ,Sections6 7usefactsaboutquadraticnumberfields,incl udingthemultiplicationofidealsintheirrin gsofintegers,andSection10usestheFourieri nversionformulaforfiniteabeliangroups, , , 3ofChapterII,whichassumesfamiliaritywith commutativeNoetherianringsasinChapterVII IofBasicAlgebra,plusthematerialinChapter Xonsemisimplemodules,chainconditionsform odules,andtheJordan H 6containthestatementandproofofWedderburn sMainTheorem, sTheoremthateveryfinitedivisionringiscom -mutativeandFrobenius sTheoremthattheonlyfinite-dimensionalass ociativedivisionalgebrasoverRareR,C,andt healgebraHofquaternions, , , ,withemphasisonconnectinghomo-morphisms, longexactsequences.

6 Good categoriesofunitalleftRmodules,Rbeingari ngwithidentity, ; , ; good categories; sheaf abelian ,butsomesubstituteisstillpossible; ,alongwithknowledgeoftheingredientsofthe theory Noetherianrings,integralclosure, theDedekindDiscriminantTheorem,theDirich letUnitTheorem, ,usingnoadditionaltools, ,completions, ,andcompactnessplaysanimportantroleinSec tions9 , ; , 5assumexxiiGuidefortheReaderknowledgeofl ocalizations, sTheoreminSection5istiedtothenotionofsin gularities; ; , 4arerelativelyelementaryandconcerntheres ultantandpreliminaryformsofBezout 6concernintersectionmultiplicityforcurve sandmakeextensiveuseoflo-calizations;the goalisabetterformofBezout 10areindependentofSections5 6andintroducethetheoryofGr 3definedivisorsandthegenusofsuchacurve,w hileSections4 5provetheRiemann , 3areconcernedwithalgebraicsetsandtheirdi mension,Sections4 6treatmapsbetweenvarieties,andSections7 12areindependentofSections6 8anddotwothingssimultaneously:theytiethe theoreticalworkondimensiontothetheoryofG r obnerbasesinChapterVIII,makingdimensionc omputable, , membershipsymbol#Sor|S|numberofelementsi nS emptyset{x E|P}thesetofxinEsuchthatPholdsEccompleme ntofthesetEE F,E F,E Funion,intersection,differenceofsets E , E union,intersectionofthesetsE E F,E FcontainmentE F,E Fpropercontainment(a1.)

7 ,an)orderedn-tuple{a1,..,an}unorderedn-t uplef:E F,x f(x)function,effectoffunctionf gorfg,f Ecompositionofffollowingg,restrictiontoE f( ,y)thefunctionx f(x,y)f(E),f 1(E)directandinverseimageofasetinone-one correspondencematchedbyaone-oneontofunct ioncountablefiniteorinone-onecorresponde ncewithintegers2 AsetofallsubsetsofANumbersystems ijKroneckerdelta:1ifi=j,0ifi =j nk binomialcoefficientnpositive,nnegativen> 0,n<0Z,Q,R,Cintegers,rationals,reals,com plexnumbersmax,minmaximum/minimumoffinit esubsetofreals[x]greatestinteger xifxisrealRez,Imzrealandimaginarypartsof complexz zcomplexconjugateofz|z|absolutevalueofzx xiiixxivNotationandTerminologyLinearalge braandelementarynumbertheoryFnspaceofn-d imensionalcolumnvectorsejjthstandardbasi svectorofFnV dualvectorspaceofvectorspaceVdimFVordimV dimensionofvectorspaceVoverfieldF0zerove ctor,matrix,orlinearmapping1orIidentitym atrixorlinearmappingAttransposeofAdetAde terminantofA[Mij]matrixwith(i,j)

8 ThentryMij L matrixofLrelativetodomainorderedbasis andrangeorderedbasis x ydotproduct =isisomorphicto,isequivalenttoFpintegers moduloaprimep,asafieldGCDgreatestcommond ivisor iscongruentto Euler s functionGroups,rings,modules,andcategori es0additiveidentityinanabeliangroup1mult iplicativeidentityinagrouporring =isisomorphicto,isequivalenttoCmcyclicgr oupofordermunitinvertibleelementinringRw ithidentityR groupofunitsinringRwithidentityRnspaceof columnvectorswithentriesinringRRoopposit eringtoRwitha b=baMmn(R)m-by-nmatriceswithentriesinRMn (R)n-by-nmatriceswithentriesinRunitallef tRmoduleleftRmoduleMwith1m=mforallm MHomR(M,N)groupofRhomomorphismsfromMinto NEndR(M)ringofRhomomorphismsfromMintoMke r ,image kernelandimageof Hn(G,N)nthcohomologyofgroupGwithcoeffici entsinabeliangroupNsimpleleftRmodulenonz erounitalleftRmodulewithnopropernonzeroR submodulessemisimpleleftRmodulesum(=dire ctsum)ofsimpleleftRmodulesObj(C)classofo bjectsforcategoryCMorphC(A,B)setofmorphi smsfromobjectAtoobjectBNotationandTermin ologyxxvGroups,rings,modules,andcategori es,continued1 AidentitymorphismonACScategoryofS-tuples ofobjectsfromObj(C)productof{Xs}s S(X,{ps}s S)suchthatifAinObj(C)and{ s MorphC(A,Xs)}aregiven,thenthereexistsaun ique MorphC(A,X)withps = sforallscoproductof{Xs}s S(X,{is}s S)suchthatifAinObj(C)and{ s MorphC(Xs,A)}aregiven,thenthereexistsaun ique MorphC(X,A)with is= sforallsCoppcategoryoppositetoCCommutati veringsRwithidentityandfactorizationofel ementsidentitydenotedby1,allowedtoequal0 idealI=(r1.)

9 ,rn)idealgeneratedbyr1,..,rnprimeidealIp roperidealwithab Iimplyinga Iorb IintegraldomainRwithnozerodivisorsandwit h1 =0R/IwithIprimealwaysanintegraldomainGL( n,R)groupofinvertiblen-by-nmatrices,entr iesinRChineseRemainderTheoremI1,..,Ingiv enidealswithIi+Ij=Rfori = :R nj=1R/IjyieldsisomorphismR nj=1Ij =R/I1 nj=1Ij=I1 sLemmaIfIisanidealcontainedinallmaximali dealsandMisafinitelygeneratedunitalRmodu lewithIM=M,thenM= A , [X1,..,Xn]polynomialalgebraoverRwithnind eterminatesR[x1,..,xn]Ralgebrageneratedb yx1,..,xnirreducibleelementr =0r/ R suchthatr=abimpliesa R orb R primeelementr =0r/ R suchthatwheneverrdividesab, ;inanyuniquefactorizationdomain,irreduci bleimpliesprimeGCDgreatestcommondivisori nuniquefactorizationdomainxxviNotationan dTerminologyFieldsFqafinitefieldwithq=pn elements,pprimeK/FanextensionfieldKofafi eldF[K:F]degreeofextensionK/F, ,dimFKK(X1.

10 ,Xn)fieldoffractionsofK[X1,..,Xn]K(x1,.. ,xn)fieldgeneratedbyKandx1,..,xnnumberfi eldfinite-dimensionalfieldextensionofQGa l(K/F)Galoisgroup,automorphismsofKfixing FNK/F( )andTrK/F( )normandtracefunctionsfromKtoFToolsforal gebraicnumbertheoryandalgebraicgeometryN oetherianRcommutativeringwithidentitywho seidealssatisfytheascendingchainconditio n; [X]NoetherianIntegralclosureSituation:R= integraldomain,F=fieldoffractions,K/F= KintegraloverRxisarootofamonicpolynomial inR[X]integralclosureofRinKsetofx KintegraloverR,isaringRintegrallyclosedR equalsitsintegralclosureinFLocalizationS ituation:R=commutativeringwithidentity,S = 1 Rlocalization,pairs(r,s)withr Rands S,modulo(r,s) (r ,s )ift(rs sr )=0forsomet SpropertyofS 1RI S 1 Iisone-onefromsetofidealsIinRofformI=R JontosetofidealsinS 1 Rlocalringcommutativeringwithidentityhav ingauniquemaximalidealRPforprimeidealPlo calizationwithS=complementofPinRDedekind domainNoetherianintegrallyclosedintegral domaininwhicheverynonzeroprimeidealismax imal,hasuniquefactorizationofnonzeroidea lsasproductofprimeidealsDedekinddomainex tensionRDedekind,Ffieldoffractions,K/Ffi niteseparableextension, ,andanynonzeroprimeideal inRhas R= gi=1 PeiifordistinctprimeidealsPiwithPi R=.


Related search queries