Example: bankruptcy

Econometrics Lecture Notes (OMEGA)

GraduateEconometricsLectureNotesMichaelC reel ,Copyright(C)Jan28,2002byMichaelCreelCon tents1 License, .. ;YSpace..16 ,UniversitatAut .. (Gauss-Markov theorem).. ofMLE.. r-Raolowerbound.. (Raotests,Lagrangemultipliertests).. ,Waldandscoretests.. estimation.. (1).. (1).. briefasideondummyvariables.. translogmodel.. objects:theprobitmodel.. (q)processes.. (p)processes.. (q)process.. :Consistency ofLeastSquares.. :Linearizationofa nonlinearmodel..26718 Generalizedmethodofmoments(GMM) .. specificationtest.. :Nonlinearrationalexpectations..30620 Nonlinearleastsquares(NLS) .. :ThePoissonmodelforcountdata.. :Limiteddependentvariablesandsampleselec tion.. :LaborSupply..319721 .. :estimation.. :hypothesistesting.. norm.. ofconcepts.. width:Cross-validation.. : :Marginalizationoflatentvariables.. (SML).. :multinomialprobit.

These lecture notes are copyrighted by Michael Creel with the date that appears above. The are provided under the terms of the GNU General Public License, which forms Section 25 of the notes. The main thing you need to know is that you are free to modify and distribute these notes in any way you like, as long as you do so under the terms of the ...

Tags:

  Lecture, Notes, Lecture notes

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Econometrics Lecture Notes (OMEGA)

1 GraduateEconometricsLectureNotesMichaelC reel ,Copyright(C)Jan28,2002byMichaelCreelCon tents1 License, .. ;YSpace..16 ,UniversitatAut .. (Gauss-Markov theorem).. ofMLE.. r-Raolowerbound.. (Raotests,Lagrangemultipliertests).. ,Waldandscoretests.. estimation.. (1).. (1).. briefasideondummyvariables.. translogmodel.. objects:theprobitmodel.. (q)processes.. (p)processes.. (q)process.. :Consistency ofLeastSquares.. :Linearizationofa nonlinearmodel..26718 Generalizedmethodofmoments(GMM) .. specificationtest.. :Nonlinearrationalexpectations..30620 Nonlinearleastsquares(NLS) .. :ThePoissonmodelforcountdata.. :Limiteddependentvariablesandsampleselec tion.. :LaborSupply..319721 .. :estimation.. :hypothesistesting.. norm.. ofconcepts.. width:Cross-validation.. : :Marginalizationoflatentvariables.. (SML).. :multinomialprobit.

2 (MSM).. (EMM).. : estimationofauctionmodels.. :estimationofstochasticdifferentialequat ions.. :estimationofa , , know is thatyouarefreeto modifyanddistributethesenotesinany wayyoulike, , (Open-sourceMaterialsforEconometrics,GPL A rchive) They werepreparedusingLYX( ).LYXisanopensource whatyouseeiswhatyoumean wordprocessor. It canexportyourworkinTEX,HTML, willrunonUnix,Windows, , ,aswellasPDF, HTML, ,forstudy, preparinga course, findthata hardcopy is ofmostuseforlecturingorstudy, whilethehtmlversionis usefulforquickreferenceoransweringstuden ts wouldgreatlyappreciatethatyouinformmeofa ny d alsowelcomecontributionsinany area, modelfromeconomictheory:xi=xi(pi;mi;zi) xiisG 1 vectorofquantitiesdemanded piisG 1 vectorofprices miis income ziis a vectorofindividualcharacteristicsrelated topreferencesSupposea sampleofoneobservationofnindividuals demandsattimeperiodt(thisis acrosssection).

3 Themodelis notestimableasit stands. Theformofthedemandfunctionis differentforalli: Somecomponentsofziaresubjecttofluctuatio nsthatarenotobservabletooutsidemodeler(p eopledon t eatthesameluncheveryday).Breakziintotheo bservablecomponentswiandanunobservableco mponent i:Anestimable( ,econometric)modelisxi= 0+p0i p+mi m+w0i w+ iWe have imposeda numberofrestrictionsonthetheoreticalmode l: Thefunctionsxi( )whichmaydifferforallihave Ofallparametricfamiliesoffunctions,wehav e , ,theserestrictionshave notheoreticalbasis. Thevalidityofany ,specificationtestingwillbeneeded, at leastapproximatelycorrectshouldweuseit a modelis : themodelis a linearfunctionoftheparametervector 0:yt=x0t 0+ t;orinmatrixform,y=X 0+ ;whereyisn 1;X= x1x2 xn 0;wherextisK 1;and 0and 0 in 0meansthisis s mightfirstappear, sinceonecanemploynonlineartransformation softhevariables: 0(zt) = 1(wt) 2(wt) p(wt) 0+ t(The i()areknownfunctions).

4 Definingyt= 0(zt);xt1= 1(wt); modelintheformofequation(??). Forexample,theCobb-Douglasmodelz=Aw 22w 33exp( )canbetransformedlogarithmicallytoobtain lnz=lnA+ 2lnw2+ 3lnw3+ errors:E( )=0 Var( ) =E( 0) = ,linearlyindependentregressors(a)Xhasran kK(b)Xis nonstochastic(c)limn! 1nX0X=QX;a finitepositive (Optional): is is togaininformationabouttheunknownparamete rs 0and 20: =arg mins( ) =n t=1 yt x0t 2s( ) =(y X )0(y X )=y0y 2y0X + 0X0X =ky X k2 Thislastexpressionmakesit clearhow theOLSestimatorchooses : it minimizestheEuclideandistancebetweenyand X : To minimizethecriterions( );take :D s( ) = 2X0y+2X0X =014so = (X0X) 1X0y: To verifythatthisis a minimum, :D2 s( ) =2X0 XSince (X) =K;thismatrixis positive definite,sinceit s a (identitymatrixofordern), so is infacta minimizer. Thefittedvaluesareinthevector y=X : Theresidualsareinthevector =y X Notethaty=X + =X + 20isc 20=1n K 0 ;YSpaceDoa plotwiththetrueline, observationsandtheestimatedline.

5 Wewanttoplotinobservationspace,we ll needtouseonlytwo s observations,wecan t haveK>1:Drawa picturewithtwoobservationsandoneregresso r. We candecomposeyintotwo components:theorthogonalprojectionontoth eK dimensionalspacespannedbyX,X ;andthecomponentthatistheor-thogonalproj ectionontothen Ksubpacethatis orthogonaltothespanofX; : Since is chosento make asshortaspossible, willbeorthogonalto thespacespannedbyX:SinceXis inthisspace,X0 =0 We have thatX is theprojectionofyonthespanofX;orX =X X0X 1X0yTherefore,thematrixthatprojectsyonto thespanofXisPX=X(X0X) 1X0sinceX =PXy: is theprojectionofy offthespacespannedbyX(thatis ontothespacethatis16orthogonaltothespano fX):We have that =y X =y X(X0X) 1X0y= In X(X0X) 1X0 y:Sothematrixthatprojectsyoff thespanofXisMX=In X(X0X) 1X0=In PX:We have =MXy: Thereforey=PXy+MXy=X + : NotethatbothPXandMXaresymmetricandidempo tent.

6 A symmetricmatrixAis onesuchthatA=A0: AnidempotentmatrixAis onesuchthatA=AA: Theonlynonsingularidempotentmatrixis 0is simply i= (X0X) 1X0 i y=c0iyThisis howwedefinea linearestimator- it s a s a linearcombinationoftheobservationsonthed ependentvari-able,wheretheweightsaredete minedbytheobservationsontheregressors,so meobservationsmayhave (PX)tt=e0tPXet=kPXetk2 ketk2=1htis thetthelementonthemaindiagonalofPX(etis anvectorofzeroswitha 1 inthetthposition).So0 ht 1;andT rPX=K)h=K=n:A bettermethodis withoutusingthetthobser-vation(designate thisestimatoras (t)):Onecanshow (seeDavidsonandMacKinnon, )that (t)= 11 ht (X0X) 1X0t t18sothechangeinthetthobservationsfitted valueisXt Xt (t)= ht1 ht tWhileandobservationmaybeinfluentialif it doesn t affectitsownfittedvalue,itcertainlyisinf luentialif it fastmeansofidentifyinginfluentialobserva tionsistoplot ht1 ht tasa ,oneneedstodeterminewhythey commoncauseis a dataentryerror, thedatais thatpurerandomnesscausedustosamplea + Take theinnerproduct:y0y= 0X0X +2 0X0 + 0 ButthemiddletermoftheRHSis zerosinceX0 =0, soy0y= 0X0X + 0 19 TheuncenteredR2uis definedasR2u=1 0 y0y= 0X0X y0y=kPXyk2kyk2=cos2( );where is theanglebetweenyandthespanofX(showwithth eoneregressor, twoobservationexample).

7 TheuncenteredR2changesif weadda constanttoy;sincethischanges . An-other, morecommondefinitionmeasuresthecontribut ionofthevariables,otherthantheconstantte rm,toexplainingthevariationiny: Let = (1;1; :::;1)0;an-vector. SoM =In ( 0 ) 1 0=In 0=nM definedasR2c=1 0 y0M y=1 ESST SSSupposingthatXcontainsa columnofones( ,thereis a constantterm),X0 =0) t t=020soM = :Inthiscasey0M y= 0X0M X + 0 SoR2c=RSST SS Supposingthata columnofonesis inthespacespannedbyX(PX = );thenonecanshow that0 R2c 1 wehave =(X0X) 1X0y=(X0X) 1X0(X + )= 0+ (X0X) 1X0 E( ) = 0:For 2wehave21c 20=1n K 0 =1n K 0M E(c 20) =1n KE(T r 0M )=1n KE(T rM 0)=1n KT rE(M 0)=1n K 20T rM=1n K 20 n T rX(X0X) 1X0 =1n K 20 n T r(X0X) 1X0X = = 0+ (X0X) 1X0 Thisis a linearfunctionof ;whichis N 0;(X0X) 1 20 (Gauss-Markov theorem)TheOLSestimatoris alinearestimator, whichmeansthatit is a linearfunctionofthedependentvariable,y: = (X0X) 1X0 y=Cy22It is alsounbiased, ll =Wy:Iftheestimatoris unbiasedE(Wy)=E(W X 0+W )=W X 0= 0)W X=IKThevarianceof isV( ) =WW0 20:DefineD=W (X0X) 1X0soW=D+ (X0X) 1X0 SinceW X=IK;DX=0;soV( ) = D+ (X0X) 1X0 D+ (X0X) 1X0 0 20= DD0+ (X0X) 1 20 SoV( ) V( ):Thisis a proofoftheGauss-Markov (Gauss-Markov)Undertheclassicalassumptio ns,thevarianceofanylinearunbiasedestimat orminusthevarianceof theOLSestimatoris a positivesemidef-initematrix.

8 It is worthnotingthatwehave notusedthenormalityassumptioninany waytoprove theGauss-Markov theorem,soit is validif theerrorsarenotnormallydistributed, is usefulto reviewtheMLEestimator, sinceundertheassumptionofnormalerrorsthe two sampleofsizenofa randomvectory. SupposethejointdensityofY= y1: : :yn is characterizedbya parametervector 0:fY(Y; 0):Thiswilloftenbereferredtousingthesimp lifiednotationf( 0):Thelikelihoodfunctionis justthisdensityevaluatedat othervalues L(Y; ) =fY(Y; ); 2 ;where is aparameterspace. If thenobservationsareindependent,thelikeli hoodfunctioncanbewrittenasL(Y; ) =n t=1f(yt; )wheretheftarepossiblyofdifferentform. Evenif thisis notpossible,wecanalwaysfactorthelikeliho odintocontributionsofobservations,byusin gthefactthata jointdensitycanbefactoredintotheproducto fa marginalandconditional(doingthisiterativ ely)L(Y; ) =f(y1; )f(y2jy1; )f(y3jy1;y2; ) f(ynjy1;y2; : : :yt n; )25To simplifynotation,definext=fy1;y2; :::;yt 1g;t 2=S;t=1whereSis thesamplespaceofY:(Withthis,conditioning onx1hasnoeffectandgivesa marginalprobability).

9 Now thelikelihoodfunctioncanbewrittenasL(Y; ) =n t=1f(ytjxt; )Thecriterionfunctioncanbedefinedastheav eragelog-likelihoodfunction:sn( ) =1nlnL(Y; ) =1nn t=1lnf(ytjxt; )Themaximumlikelihoodestimatoris definedas =arg maxsn( );wherethesetmaximizedoveris definedbelow. Sinceln( )is a monotonicincreasingfunction,lnLandLmaxim izeat thesamevalueof :Dividingbynhasnoeffecton ,andthereforeit is show consistency oftheMLE,weneedtomake 2 ;a openboundedsubsetof K:Maximixationis26over ;whichis is aninteriorpointoftheparameterspace .Uniformconvergencesn( )u:a:s!limn! E 0sn( ) s ( ; 0);8 2 :We have suppressedYhereforsimplicity. ( )is continuousin ; 2 :Thisimpliesthats ( ; 0)is continuousin :Identifications ( ; 0)hasa willusetheseassumptionstoshow that a:s:! 0:First, certainlyexists,sincea continuousfunctionhasa maximumona ,forany 6= 0E ln L( )L( 0) ln E L( )L( 0) byJensen s inequality( ln( )is a concave function).

10 Now, theexpectationontheRHSisE L( )L( 0) = L( )L( 0)L( 0)dy=1;sinceL( 0)isthedensityfunctionoftheobservations: Therefore,sinceln(1) =0;E ln L( )L( 0) 0;27orE(sn( )) E(sn( 0)) 0:Takinglimits,thisiss ( ; 0) s ( 0; 0) 0exceptona setofzeroprobability(bytheuniformconverg enceassumption).Bytheidentificationassum ptionthereis a uniquemaximizer, sotheinequalityisstrictif 6= 0:s ( ; 0) s ( 0; 0)<0;8 6= 0;However, since is a maximizer, independentofn;wemusthaves ( ; 0) s ( 0; 0) 0:Theselasttwo inequalitiesimplythatlimn! = 0;a:s:Thiscompletestheproofofstrongconsi stency weakconsistency (convergenceinprobabilityto 0) functionDifferentiabilityAssumethatsn( )is twicecontinuouslydifferentiableinN( 0), atleastwhennis maximizethelog-likelihoodfunction,take derivatives:gn(Y; ) =D sn( )=1nn t=1D lnf(ytjxx; ) 1nn t=1gt( ):Thisisthescore vector(withdimK 1):NotethatthescorefunctionhasYasanargum ent,whichimpliesthatit is a , butoneshouldnotforgetthatit is setsthederivativestozero:gn( ) =1nn t=1gt( ) 0:We willshow thatE [gt( )] =0;8t:Thisis theexpectationtakenwithrespecttothedensi tyf( );notnecessarilyf( 0):E [gt( )]= [D lnf(ytjx; )]f(ytjx; )dyt= 1f(ytjxt; )[D f(ytjxt; )]f(ytjxt; )dyt= D f(ytjxt; )dyt:Givensomeregularityconditionsonboun dednessofD f;wecanswitchtheorderofintegrationanddif ferentiation, [gt( )]=D f t(ytjxt.)


Related search queries