Example: barber

# GPS測量の原理 - mmij-kyushu.com

GPS .. GPS . NAVSTAR/GPS. 24 31 .. 20,200km 11 58 02 . 55 . 60 . A, B, C, D, E, F. (f0) L1 ( f0 ). C/A 480W. P(Y) 240W. L2 ( f0). P(Y) 81W. H25 2. GPS .. 1 C/A 30m SA L1 1 . 2 P(Y) 16m L1 L2 2 . 3 Doppler cm/s L1 1 L1 L2 2 .. 1 DGPS GPS . C/A 2 3m . P(Y) 1m . 2 GPS L1 L2 .. static 1cm 60 . rapid static 3cm 20 . kinematic 3cm 10 . kinematic stop and go 3cm 10 . kinematic 3cm 10 . H25 3. GPS .. A B .. A B .. GPS .. GPS .. 100km . cm . H25 4.. GPS S (. sin t S S + 2 N S ). GPS =2 f .. N .. A sin ( t A + 2 N A ).. IF .. sin sin = {cos( + ) cos( )}/ 2. IF =. 1.

h25岩盤斜面合同現地検討会. 4. gps. 測量の概要 ＜行路差＞ 測点aから衛星までの距離と測点bから衛星 までの距離の差。

### Information

Domain:

Source:

Please notify us if you found a problem with this document:

### Transcription of GPS測量の原理 - mmij-kyushu.com

1 GPS .. GPS . NAVSTAR/GPS. 24 31 .. 20,200km 11 58 02 . 55 . 60 . A, B, C, D, E, F. (f0) L1 ( f0 ). C/A 480W. P(Y) 240W. L2 ( f0). P(Y) 81W. H25 2. GPS .. 1 C/A 30m SA L1 1 . 2 P(Y) 16m L1 L2 2 . 3 Doppler cm/s L1 1 L1 L2 2 .. 1 DGPS GPS . C/A 2 3m . P(Y) 1m . 2 GPS L1 L2 .. static 1cm 60 . rapid static 3cm 20 . kinematic 3cm 10 . kinematic stop and go 3cm 10 . kinematic 3cm 10 . H25 3. GPS .. A B .. A B .. GPS .. GPS .. 100km . cm . H25 4.. GPS S (. sin t S S + 2 N S ). GPS =2 f .. N .. A sin ( t A + 2 N A ).. IF .. sin sin = {cos( + ) cos( )}/ 2. IF =. 1.

2 2. { ( ) (. cos ( t A ) t S S + 2 N A N S )}.. H25 5.. IF =. 1. 2. { ( ). cos ( t A ) t S S + 2 N A N S ( )}. ( t A ) 2 = A (t ) A . ( t ) 2 = (t ). S S S S. S . (N N ) = N. A. S S. A . ts . S tS ( ) = S (t ) = S (t ) . d S. (t ) K = S (t ) = S (t ) f . dt 2 . AS (t ) . AS (t ) = A (t ) S (t ) + f + N AS . H25 6.. AS (t ) = f + N AS + A (t ) S (t ) = A (t ) + N AS + PAS. f S. C.. AS (t ) . C (299,792km/s). PAS = A (t ) S (t ) . 1 . 2 . 3 .. H25 7.. GPS A B .. A (t ) = A (t ) + N AS + PAS. f S. AS. C.. B B. S. (t ) = B (t ) + N BS + PBS. f S. C.. AB. S. (t ) = BS (t ) AS (t ).

3 =. f C. { } ( ) (. BS (t ) AS (t ) + N BS N AS + PBS PAS ).. H25 8.. H25 9.. A (t ) = f (t A (t )) A (t ) A . (. S (t ) = f t S (t ) ) S (t ) S . PA (t ) = A (t ) . S S. (t ) = { }. f S (t ) A (t ) .. 1AB (t ) = B1 (t ) 1A (t ). =. f C. { } ( ) { }. 1B (t ) 1A (t ) + N 1B N 1A + f 1 (t ) f 1 (t ) + f { A (t ) B (t )}.. =. f C. { }. 1B (t ) 1A (t ) + f AB (t ) + N 1AB. A B . H25 10.. 12. A (t ) = 2. A (t ) A (t ). 1. =. f C. { } ( ) { }. A2 (t ) 1A (t ) + N A2 N 1A + f 2 (t ) f 1 (t ) + f { A (t ) A (t )}.. =. f C. { }. A2 (t ) 1A (t ) + f 12. A (t ) + N 12.

4 A. 1 2 . H25 11.. A B 1,2 . 12. AB (t ) = 2. AB (t ) AB (t ). 1. =. f { }. B2 (t ) A2 (t ) + f AB (t ) + N AB. 2 f { } . 1B (t ) 1A (t ) + f AB (t ) + N 1AB . C C . AB (t ) + N AB. f . = 12 12. C . { 2 2. }{. AB (t ) = B (t ) A (t ) B (t ) A (t ). 12 1 1. } . AB = N AB N AB. N 12 2 1.. H25 12.. 12. AB (t ) = {. 2. B (t ) 2. A (t }{. ) 1. B (t ) A (t ). 1. }.. B X,Y,Z 3 . 3 4 3 .. AB (t ) = AB (t ) + N 12 ( ) ( ) ( ) ( ). f 12 f 13 f 14. 12 AB , 13. AB t = AB t + N 13. AB , 14. AB t = AB t + N 14. AB. C C C.. 6 . H25 13.. 4 t1 t2 6 .. AB (t1 ) =. 12. f C. [{ (t ).]}

5 2. B 1. 2. A t1( ) } { 1B (t1 ) 1A (t1 ) }] + N 12. AB. 13 (. AB 1t ) =. f C. [{ (t ) . 3. B 1. 3. A t1( ) } { 1B (t1 ) 1A (t1 ) }] + N 13. AB. 14 (. AB 1t ) =. f C. [{ (t ) . 4. B 1. 2. A t1( ) } { 1B (t1 ) 1A (t1 ) }] + N 14. AB. 12 (. AB 2t ) =. C. f [{ (t ) . 2. B 2. 2. A (t 2 ) } { 1B (t 2 ) 1A (t 2 ) }] + N 12. AB. 13 (. AB 2t ) =. C. f [{ (t ) . 3. B 2. 3. A (t 2 ) } { 1B (t 2 ) 1A (t 2 ) }] + N 13. AB. 14 (. AB 2t ) =. C. f [{ (t ) . 4. B 2. 2. A (t 2 ) } { 1B (t 2 ) 1A (t 2 ) }] + N 14. AB. B XB,YB,ZB 3 . H25 14.. L1 L2 .. H25 15.