Example: confidence

Mathematical Formula Handbook

ContentsIntroduction..1 Bibliography; ..2 ArithmeticandGeometricprogressions;Conve rgenceof series:theratiotest;Convergenceof series:thecomparisontest;Binomialexpansi on;TaylorandMaclaurinSeries;Powerseriesw ithrealvariables;Integerseries; ..3 Scalarproduct; Equationof a line; Equationof a plane; Vectorproduct; Scalartripleproduct;Vectortripleproduct; Non-orthogonalbasis; ..5 Unitmatrices;Products; Transposematrices; Inversematrices;Determinants; 2 2 matrices;Productrules; Orthogonalmatrices;Solvingsetsof linearsimultaneousequations; Hermitianmatrices;Eigenvaluesandeigenvec tors;Commutators;Hermitianalgebra; ..7 Notation; Identities;Grad,Div, CurlandtheLaplacian; Transformationof ..9 Complexnumbers; DeMoivre's theorem; ..10 Relationsbetweensidesandanglesof anyplanetriangle;Relationsbetweensidesan danglesof ..11 Relationsof thefunctions; ..13 Standardforms;Standardsubstitutions; Integrationbyparts;Differentiationof anintegral;Dirac -`function'.

document issued by the Department of Engineering, but obviously reects the particular interests of physicists. There was discussion as to whether it should also include physical formulae such as Maxwell’s equations, etc., but

Tags:

  Engineering, Formula

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Mathematical Formula Handbook

1 ContentsIntroduction..1 Bibliography; ..2 ArithmeticandGeometricprogressions;Conve rgenceof series:theratiotest;Convergenceof series:thecomparisontest;Binomialexpansi on;TaylorandMaclaurinSeries;Powerseriesw ithrealvariables;Integerseries; ..3 Scalarproduct; Equationof a line; Equationof a plane; Vectorproduct; Scalartripleproduct;Vectortripleproduct; Non-orthogonalbasis; ..5 Unitmatrices;Products; Transposematrices; Inversematrices;Determinants; 2 2 matrices;Productrules; Orthogonalmatrices;Solvingsetsof linearsimultaneousequations; Hermitianmatrices;Eigenvaluesandeigenvec tors;Commutators;Hermitianalgebra; ..7 Notation; Identities;Grad,Div, CurlandtheLaplacian; Transformationof ..9 Complexnumbers; DeMoivre's theorem; ..10 Relationsbetweensidesandanglesof anyplanetriangle;Relationsbetweensidesan danglesof ..11 Relationsof thefunctions; ..13 Standardforms;Standardsubstitutions; Integrationbyparts;Differentiationof anintegral;Dirac -`function'.

2 16 Diffusion(conduction)equation; Waveequation; Legendre's equation;Bessel's equation;Laplace's equation; ..18 Taylorseriesfortwovariables; Stationarypoints;Changingvariables:thech ainrule;Changingvariablesinsurfaceandvol umeintegrals ..19 Fourierseries; Fourierseriesforotherranges; Fourierseriesforoddandevenfunctions;Comp lexformof Fourierseries; DiscreteFourierseries; Fouriertransforms; Convolutiontheorem;Parseval's theorem; Fouriertransformsintwodimensions; ..24 Findingthezerosof equations; Numericalintegrationof differentialequations;Centraldifferencen otation;Approximatingtoderivatives;Inter polation:Everett's Formula ;Numericalevaluationof de ..25 Rangemethod; Combinationof ..26 MeanandVariance;Probabilitydistributions ;Weightedsumsof randomvariables;Statisticsof a datasamplex1, .. ,xn; Regression(leastsquares tting)IntroductionThisMathematicalFormau laehandbookhasbeenpreparedinresponsetoa requestfromthePhysicsConsultativeCommitt ee,withthehopethatit is tosomeextentmodelledona similardocumentissuedbytheDepartmentofEn gineering,butobviouslyre wasdiscussionastowhetherit shouldalsoincludephysicalformulaesuchasM axwell'sequations,etc.

3 ,buta decisionwastakenagainstthis,partlyontheg roundsthatthebookwouldbecomeundulybulky, butmainlybecause,initspresentform, hasbeenwideconsultationamongthestaff aboutthecontentsofthisdocument,butinevit ablysomeuserswillseekinvainfora , (equallyinevitable)errorswhichare , andcurrentlybyDrDaveGreen,usingtheTEX , , ,HandbookofMathematicalFunctions,Dover, , , ,TableofIntegrals,SeriesandProducts,Acad emicPress, , ,F., TablesofFunctions,Dover, , Osterman,J.,PhysicsHandbook,Chartwell-Br att,Bromley, , ,MathematicalHandbookofFormulasandTables .(Schaum'sOutlineSeries,McGraw-Hill,1968 ).PhysicalConstantsBasedonthe ReviewofParticleProperties , Barnettetal.,1996,PhysicsReviewD,54, p1,and TheFundamentalPhysicalConstants , Cohen&Taylor, 1997,PhysicsToday, BG7.(The guresinparenthesesgivethe1-standard-devi ationuncertaintiesinthelastdigits.)speed oflightina vacuumc2 997 924 58 108ms 1(byde nition)permeabilityofa vacuum 04 10 7Hm 1(byde nition)permittivityofa vacuum 01= 0c2=8 854 187 817.

4 10 12F m 1elementarychargee1 602 177 33(49) 10 19 CPlanckconstanth6 626 075 5(40) 10 34J sh=2 h1 054 572 66(63) 10 34J sAvogadro constantNA6 022 136 7(36) 1023mol 1uni edatomicmassconstantmu1 660 540 2(10) 10 27kgmassofelectronme9 109 389 7(54) 10 31kgmassofprotonmp1 672 623 1(10) 10 27kgBohrmagnetoneh=4 me B9 274 015 4(31) 10 24J T 1molargasconstantR8 314 510(70)J K 1mol 1 BoltzmannconstantkB1 380 658(12) 10 23J K 1 Stefan Boltzmannconstant 5 670 51(19) 10 8Wm 2K 4gravitationalconstantG6 672 59(85) 10 11Nm2kg 2 Otherdataaccelerationoffreefallg9 806 65 ms 2(standard valueatsealevel) + (a+d) + (a+2d) + + [a+ (n 1)d] =n2[2a+ (n 1)d] +ar+ar2+ +arn 1=a1 rn1 r, S1=a1 rforjrj<1 (Theseresultsalsoholdforcomplexseries.)C onvergenceofseries:theratiotestSn=u1+u2+ u3+ +unconvergesasn!1iflimn!1 un+1un <1 Convergenceofseries:thecomparisontestIf eachtermina seriesofpositivetermsislessthanthecorres pondingtermina seriesknowntobeconvergent,thenthegivense riesis (1+x)n=1+nx+n(n 1)2!

5 X2+n(n 1)(n 2)3!x3+ Ifnisa positiveintegertheseriesterminatesandisv alidforallx: theterminxrisnCrxror nr wherenCr n!r!(n r)!is thenumberofdifferentwaysinwhichanunorder edsampleofrobjectscanbeselectedfroma nota positiveinteger, theseriesdoesnotterminate:thein niteseriesisconvergentforjxj< (x)is well-behavedinthevicinityofx=athenit hasa Taylorseries,y(x) =y(a+u) =y(a) +udydx+u22!d2ydx2+u33!d3ydx3+ whereu=x aandthedifferentialcoef cientsare evaluatedatx=a. AMaclaurinseriesis a Taylorserieswitha=0,y(x) =y(0) +xdydx+x22!d2ydx2+x33!d3ydx3+ Powerserieswithrealvariablesex=1+x+x22!+ +xnn!+ validforallxln(1+x) =x x22+x33+ + ( 1)n+1xnn+ validfor 1<x 1cosx=eix+e ix2=1 x22!+x44! x66!+ validforallvaluesofxsinx=eix e ix2i=x x33!+x55!+ validforallvaluesofxtanx=x+13x3+215x5+ validfor 2<x< 2tan 1x=x x33+x55 validfor 1 x 1sin 1x=x+12x33+ + validfor 1<x<12 IntegerseriesN 1n=1+2+3+ +N=N(N+1)2N 1n2=12+22+32+ +N2=N(N+1)(2N+1)6N 1n3=13+23+33+ +N3= [1+2+3+ N]2=N2(N+1)241 1( 1)n+1n=1 12+13 14+ =ln 2[seeexpansionofln(1+x)]1 1( 1)n+12n 1=1 13+15 17+ = 4[seeexpansionoftan 1x]1 11n2=1+14+19+116+ = 26N 1n(n+1)(n+2) = + + +N(N+1)(N+2) =N(N+1)(N+2)(N+3)4 Thislastresultis a specialcaseofthemore generalformula,N 1n(n+1)(n+2).

6 (n+r) =N(N+1)(N+2)..(N+r)(N+r+1)r+ (ikz) =exp(ikrcos ) =1 l=0(2l+1)iljl(kr)Pl(cos ),wherePl(cos )are Legendre polynomials(seesection11)andjl(kr)are sphericalBesselfunctions,de nedbyjl( ) =r 2 Jl+1=2( ),withJl(x)theBesselfunctionoforderl(see section11). ,j,kare orthonormalvectorsandA=Axi+Ayj+AzkthenjA j2=A2x+A2y+A2z. [Orthonormalvectors orthogonalunitvectors.]ScalarproductA B=jAj jBjcos where is theanglebetweenthevectors=AxBx+AyBy+AzBz = [AxAyAz]24 BxByBz35 Scalarmultiplicationis commutative:A B=B lineApointr (x,y,z)liesona linepassingthrougha pointaandparalleltovectorbifr=a+ bwith a planeApointr (x,y,z)is ona planeif either(a)r bd=jdj, wheredis thenormalfromtheorigintotheplane,or(b)xX +yY+zZ=1 whereX,Y,Zare B=njAj jBjsin , where is theanglebetweenthevectorsandnis a unitvectornormaltotheplanecontainingAand BinthedirectionforwhichA,B,nforma Bindeterminantform ijkAxAyAzBxByBz A Binmatrixform240 AzAyAz0 Ax AyAx03524 BxByBz35 Vectormultiplicationis notcommutative:A B= B B C=A B C= AxAyAzBxByBzCxCyCz = A C B, (B C) = (A C)B (A B)C,(A B) C= (A C)B (B C)ANon-orthogonalbasisA=A1e1+A2e2+A3e3A1 = 0 Awhere 0=e2 e3e1 (e2 e3).

7 3a b=aibi(a b)i="i jkajbkwhere"123=1;"i jk= "ik j"i jk"klm= il jm im a square matrixwithalldiagonalelementsequaltoonea ndalloff-diagonalelementszero, ,(I)i j= i j. IfAis a square matrixofordern, thenAI=I A=A. AlsoI=I sometimeswrittenasInif a(n l)matrixandBis a(l m)thentheproductABis de nedby(AB)i j=l k=1 AikBk jIngeneralAB6= a matrix,thentransposematrixATis suchthat(AT)i j= (A) a square matrixwithnon-zero determinant,thenitsinverseA 1is suchthatAA 1=A 1A=I.(A 1)i j=transposeofcofactorofAi jjAjwhere thecofactorofAi jis( 1)i+ a square matrixthenthedeterminantofA,jAj( detA)is de nedbyjAj= i,j,k,.. i ..where thenumberofthesuf xesis 2 matricesIfA= abcd then,jAj=ad bcAT= acbd A 1=1jAj d b ca Productrules(AB..N)T=NT..BTAT(AB..N) 1=N 1..B 1A 1(ifindividualinversesexist)jAB..Nj=jAj jBj..jNj(ifindividualmatricesare square)OrthogonalmatricesAnorthogonalmat rixQis a square matrixwhosecolumnsqiforma ,Q 1=QT,jQj= 1,QTis square thenAx=bhasa uniquesolutionx=A 1bifA 1exists, ,ifjAj6= square thenAx=0 hasa non-trivialsolutionif andonlyifjAj= oneinwhichAhasmrowsandncolumns,wherem(th enumberofequations)isgreaterthann(thenum berofvariables).

8 Thebestsolutionx(inthesensethatit minimizestheerrorjAx bj) isthesolutionofthenequationsATAx=ATb. If thecolumnsofAare orthonormalvectorsthenx= (A )T, whereA isa matrixeachofwhosecomponentsisthecomplexc onjugateofthecorrespondingcomponentsofA. IfA=AythenAis calleda iandeigenvectorsuiofann nmatrixAare thesolutionsoftheequationAu= u. Theeigenvaluesare thezerosofthepolynomialofdegreen,Pn( ) =jA Ij. IfAis Hermitianthentheeigenvalues iare realandtheeigenvectorsuiare Ij=0 is i i,alsojAj= i a symmetricmatrix, is thediagonalmatrixwhosediagonalelementsar e theeigenvaluesofS, andUis thematrixwhosecolumnsare thenormalizedeigenvectorsofA, thenUTSU= andS=U anapproximationtoaneigenvectorofAthenxTA x=(xTx)(Rayleigh'squotient) [A,B] AB BA[A,B]= [B,A][A,B]y= [By,Ay][A+B,C] = [A,C] + [B,C][AB,C]=A[B,C] + [A,C]B[A,[B,C]] + [B,[C,A]] + [C,[A,B]] =0 Hermitianalgebraby= (b 1,b 2, ..)MatrixformOperatorformBra-ketformHerm iticityb A c= (A b) cZ O =Z(O ) h jOj iEigenvalues, realAui= (i)uiO i= (i) iOjii= ijiiOrthogonalityui uj=0Z i j=0hijji=0(i6=j)Completenessb= iui(ui b) = i i Z i = ijii hij iRayleigh RitzLowesteigenvalue 0 b A bb b 0 Z O Z h jOj ih j i6 Paulispinmatrices x= 0110 , y= 0 ii0 , z= 100 1 x y=i z, y z=i x, z x=i y, x x= y y= z z= is a scalarfunctionofa = (x,y,z); incylindricalpolarcoordinates = ( ,',z); insphericalpolarcoordinates = (r, ,'); incaseswithradialsymmetry = (r).

9 Ais a vectorfunctionwhosecomponentsare scalarfunctionsofthepositioncoordinates: inCartesiancoordinatesA=iAx+jAy+kAz, whereAx,Ay,Azare independentfunctionsofx,y, (`del') i x+j y+k z 266666664 x y z377777775grad =r ,divA=r A,curlA=r AIdentitiesgrad( 1+ 2) grad 1+grad 2div(A1+A2) divA1+divA2grad( 1 2) 1grad 2+ 2grad 1curl(A1+A2) curlA1+curlA2div( A) divA+ (grad ) A,curl( A) curlA+ (grad ) Adiv(A1 A2) A2 curlA1 A1 curlA2curl(A1 A2) A1divA2 A2divA1+ (A2 grad)A1 (A1 grad)A2div(curlA) 0,curl(grad ) 0curl(curlA) grad(divA) div(gradA) grad(divA) r2 Agrad(A1 A2) A1 (curlA2) + (A1 grad)A2+A2 (curlA1) + (A2 grad)A17 Grad,Div, CurlandtheLaplacianCartesianCoordinatesC ylindricalCoordinatesSphericalCoordinate sConversiontoCartesianCoordinatesx= cos'y= sin'z=zx=rcos'sin y=rsin'sin z=rcos VectorAAxi+Ayj+AzkA b +A'b'+AzbzArbr+A b +A'b'Gradientr xi+ yj+ zk b +1 'b'+ zbz rbr+1r b +1rsin 'b'Divergencer A Ax x+ Ay y+ Az z1 ( A )

10 +1 A' '+ Az z1r2 (r2Ar) r+1rsin A sin +1rsin A' 'Curlr A ijk x y zAxAyAz 1 b b'1 bz ' zA A'Az 1r2sin br1rsin b 1rb' r 'ArrA rA'sin Laplacianr2 2 x2+ 2 y2+ 2 z21 +1 2 2 '2+ 2 z21r2 r r2 r +1r2sin sin +1r2sin2 2 '2 TransformationofintegralsL=thedistanceal ongsomecurve`C'inspaceandis measuredfromsome surfacearea =a volumecontainedbya speci edsurfacebt=theunittangenttoCatthepointP bn=theunitoutward pointingnormalA=somevectorfunctiondL=the vectorelementofcurve(=btdL)dS=thevectore lementofsurface(=bndS)ThenZCA btdL=ZCA dLandwhenA=r ZC(r ) dL=ZCd Gauss's Theorem(DivergenceTheorem)WhenSde nesa closedregionhavinga volume Z (r A)d =ZS(A bn)dS=ZSA dSalsoZ (r )d =ZS dSZ (r A)d =ZS(bn A)dS8 Stokes's TheoremWhenCis closedandboundstheopensurfaceS,ZS(r A) dS=ZCA dLalsoZS(bn r )dS=ZC dLGreen's TheoremZS r dS=Z r ( r )d =Z r2 + (r ) (r ) d Green's SecondTheoremZ ( r2 r2 )d =ZS[ (r ) (r )] +iy=r(cos +i sin ) =rei( +2n ), where i2= 1 andnis anarbitraryinteger.


Related search queries