Example: barber

MC33077 Low Noise Dual Operational Amplifier

Semiconductor Components Industries, LLC, 2004 March, 2004 Rev. 51 Publication Order Number: MC33077 /DMC33077 Operational Amplifier , Low Noise , DualThe MC33077 is a precision high quality, high frequency, low Noise monolithic dual Operational Amplifier employing innovative bipolar design techniques. Precision matching coupled with a unique analog resistor trim technique is used to obtain low input offset voltages. dual doublet frequency compensation techniques are used to enhance the gain bandwidth product of the Amplifier . In addition, the MC33077 offers low input Noise voltage, low temperature coefficient of input offset voltage, high slew rate, h igh AC and DC open loop voltage gain and low supply current drain. The all NPN transistor output stage exhibits no deadband cross over distortion, large output voltage swing, excellent phase and gain margins, low open loop output impedance and symmetrical source and sink AC frequency MC33077 is available in plastic DIP and SOIC 8 packages (P and D suffixes).

MC33077 Low Noise Dual Operational Amplifier The MC33077 is a precision high quality, high frequency, low noise monolithic dual operational amplifier employing innovative bipolar design techniques. Precision matching coupled with a unique analog ... Power Supply Rejection (Note 3) VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V PSR

Tags:

  High, Operational, Power, Supply, Noise, Amplifier, Dual, Rejection, Power supply rejection, Mc33077 low noise dual operational amplifier, Mc33077

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of MC33077 Low Noise Dual Operational Amplifier

1 Semiconductor Components Industries, LLC, 2004 March, 2004 Rev. 51 Publication Order Number: MC33077 /DMC33077 Operational Amplifier , Low Noise , DualThe MC33077 is a precision high quality, high frequency, low Noise monolithic dual Operational Amplifier employing innovative bipolar design techniques. Precision matching coupled with a unique analog resistor trim technique is used to obtain low input offset voltages. dual doublet frequency compensation techniques are used to enhance the gain bandwidth product of the Amplifier . In addition, the MC33077 offers low input Noise voltage, low temperature coefficient of input offset voltage, high slew rate, h igh AC and DC open loop voltage gain and low supply current drain. The all NPN transistor output stage exhibits no deadband cross over distortion, large output voltage swing, excellent phase and gain margins, low open loop output impedance and symmetrical source and sink AC frequency MC33077 is available in plastic DIP and SOIC 8 packages (P and D suffixes).

2 Features Low Voltage Noise : nV/Hz @ kHz Low Input Offset Voltage: mV Low TC of Input Offset Voltage: V/ C high Gain Bandwidth Product: 37 MHz @ 100 kHz high AC Voltage Gain: 370 @ 100 kHz1850 @ 20 kHz Unity Gain Stable: with Capacitance Loads to 500 pF high Slew Rate: 11 V/ s Low Total Harmonic Distortion: Large Output Voltage Swing: +14 V to V high DC Open Loop Voltage Gain: 400 k (112 dB) high Common Mode rejection : 107 dB Low power supply Drain Current: mA dual supply Operation: V to 18 V Pb Free Package is AvailableDevicePackageShipping ORDERING INFORMATIONMC33077 DSOIC 898 Units/RailMC33077DR2 SOIC 82500 Tape & ReelPDIP 8P SUFFIXCASE 62618 SOIC 8D SUFFIXCASE 75118 MARKINGDIAGRAMS1818A= Assembly LocationWL, L= Wafer LotYY, Y= YearWW, W = Work WeekMC33077 PPDIP 850 Units/RailPIN CONNECTIONS42 VEE135678 VCCO utput 2 Inputs 2 Inputs 1( dual , Top View)-+1-+2 Output 133077 ALYWMC33077P AWL 8(Pb Free)2500 Tape & Reel For information on tape and reel specifications,including part orientation and tape sizes, pleaserefer to our Tape and Reel Packaging SpecificationsBrochure, BRD8011 R18D6Q14D4R13C6R14Q16Z1 NegQ4D2R10R12D5R15 VEEBias NetworkFigure 1.

3 Representative Schematic Diagram (Each Amplifier )Q2 MAXIMUM RATINGSR atingSymbolValueUnitSupply Voltage (VCC to VEE)VS+36 VInput Differential Voltage RangeVIDR(Note 1)VInput Voltage RangeVIR(Note 1)VOutput Short Circuit Duration (Note 2)tSCIndefinitesecMaximum Junction TemperatureTJ+150 CStorage TemperatureTstg 60 to +150 CESD Protection at any Pin Human Body Model Machine ModelVesd550150 VMaximum power DissipationPD(Note 2)mWOperating Temperature RangeTA 40 to + 85 CMaximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. Ifstress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected. Functional operationshould be restricted to the Recommended Operating Either or both input voltages should not exceed VCC or VEE (See Applications Information).2. power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (See power dissipation performancecharacteristic, Figure 2).

4 MC33077 ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = 15 V, TA = 25 C, unless otherwise noted.)CharacteristicsSymbolMinTypMaxUni tInput Offset Voltage (RS = 10 , VCM = 0 V, VO = 0 V)TA = +25 CTA = 40 to +85 C|VIO| Temperature Coefficient of Input Offset VoltageRS = 10 , VCM = 0 V, VO = 0 V, TA = 40 to +85 C VIO/ T V/ CInput Bias Current (VCM = 0 V, VO = 0 V)TA = +25 CTA = 40 to +85 CIIB 280 10001200nAInput Offset Current (VCM = 0 V, VO = 0 V)TA = +25 CTA = 40 to +85 CIIO 15 180240nACommon Mode Input Voltage Range ( VIO ,= mV, VO = 0 V)VICR 14 VLarge Signal Voltage Gain (VO = V, RL = k )TA = +25 CTA = 40 to +85 CAVOL150125400 kV/VOutput Voltage Swing (VID = V)RL = k RL = k RL = 10 k RL = 10 k VO+VO VO+VO + + + + Mode rejection (Vin = 13 V)CMR85107 dBPower supply rejection (Note 3)VCC/VEE = +15 V/ 15 V to + V/ VPSR8090 dBOutput Short Circuit Current (VID = V, Output to Ground)SourceSinkISC+10 20+26 33+60+60mAPower supply Current (VO = 0 V, All Amplifiers)

5 TA = +25 CTA = 40 to +85 CID Measured with VCC and VEE simultaneously ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = 15 V, TA = 25 C, unless otherwise noted.)CharacteristicsSymbolMinTypMaxUni tSlew Rate (Vin = 10 V to +10 V, RL = k , CL = 100 pF, AV = + ) V/ sGain Bandwidth Product (f = 100 kHz)GBW2537 MHzAC Voltage Gain (RL = k , VO = 0 V)f = 100 kHzf = 20 kHzAVO 3701850 V/VUnity Gain Bandwidth (Open Loop)BW MHzGain Margin (RL = k , CL = 10 pF)Am 10 dBPhase Margin (RL = k , CL = 10 pF) m 55 DegChannel Separation (f = 20 Hz to 20 kHz, RL = k , VO = 10 Vpp)CS 120 dBPower Bandwidth (VO = 27p p, RL = k , THD 1%)BWp 200 kHzDistortion (RL = k AV = + , f = 20 Hz to 20 kHzVO = VRMSAV = 2000, f = 20 kHzVO = VppVO = 10 VppAV = 4000, f = 100 kHzVO = VppVO = 10 VppTHD %Open Loop Output Impedance (VO = 0 V, f = fU)|ZO| 36 Differential Input Resistance (VCM = 0 V)Rin 270 k Differential Input Capacitance (VCM = 0 V)Cin 15 pFEquivalent Input Noise Voltage (RS = 100 )f = 10 Hzf = kHzen nV/ Hz Equivalent Input Noise Current (f = kHz)f = 10 Hzf = kHzin pA/ Hz PD(MAX))

6 , MAXIMUM power DISSIPATION (mW)Figure 2. Maximum power Dissipationversus TemperatureFigure 3. Input Bias Currentversus supply VoltageTA, AMBIENT TEMPERATURE ( C) MC33077 PMC33077 DVCC, |VEE|, supply VOLTAGE (V), INPUT BIAS CURRENT (nA)IIBVCM = 0 VTA = 25 C240020001600120080040008006004002000-60 -40 -20020406080100 120 140 160 4. Input Bias Currentversus TemperatureFigure 5. Input Offset Voltageversus TemperatureFigure 6. Input Bias Current versusCommon Mode VoltageFigure 7. Input Common Mode Voltage Rangeversus TemperatureFigure 8. Output Saturation Voltage versusLoad Resistance to GroundFigure 9. Output Short Circuit Currentversus TemperatureTA, AMBIENT TEMPERATURE ( C)VCC = +15 VVEE = -15 VVCM = 0 V, INPUT BIAS CURRENT (nA)IIBV , INPUT OFFSET VOLTAGE (mV)IOTA, AMBIENT TEMPERATURE ( C)VCC = +15 VVEE = -15 VRS = 10 VCM = 0 VAV = + , COMMON MODE VOLTAGE (V), INPUT BIAS CURRENT (nA)IIBVCC = +15 VVEE = -15 VTA = 25 CTA, AMBIENT TEMPERATURE ( C)InputVoltageRangeVCC = + V to +15 VVEE = V to -15 V VIO = mVVO = 0 V+VCM-VCMVICR, INPUT COMMON MODE VOTAGE RANGE (V)RL, LOAD RESISTANCE TO GROUND (k )V , OUTPUT SATURATION VOLTAGE (V)satVCC = +15 VVEE = -15 V125 C25 C-55 C125 C25 C-55 CSinkSourceTA, AMBIENT TEMPERATURE ( C)|I |, OUTPUT SHORT CIRCUIT CURRENT (mA)SCVCC = +15 VVEE = -15 VVID = VRL < 100 + + + + 0 VCC -2 VCC -4 VEE +4 VEE +2 VEE 10.

7 supply Currentversus TemperatureFigure 11. Common Mode Rejectionversus FrequencyFigure 12. power supply Rejectionversus FrequencyFigure 13. Gain Bandwidth Productversus supply VoltageFigure 14. Gain Bandwidth Productversus TemperatureFigure 15. Maximum Output Voltageversus supply Voltage 15 VI , supply CURRENT (mA)CCTA, AMBIENT TEMPERATURE ( C) VVCM = 0 VRL = VO = 0 VCMR, COMMON MODE rejection (dB)f, FREQUENCY (Hz)VCC = +15 VVEE = -15 VVCM = 0 V VCM = VTA = 25 Cf, FREQUENCY (Hz)PSR, power supply rejection (dB)-PSR+PSR+PSR = 20 Log VO/ADM VCC-PSR = 20 Log VO/ADM VEERL = 10 k CL = 0 pFf = 100 kHzTA = 25 CGBW, GAIN BANDWIDTH PRODUCT (MHz)VCC, |VEE|, supply VOLTAGE (V)TA, AMBIENT TEMPERATURE ( C)GBW, GAIN BANDWIDTH PRODUCT (MHz)VCC = +15 VVEE = -15 Vf = 100 kHzRL = 10 k CL = 0 pFVp +Vp -VCC, |VEE|, supply VOLTAGE (V)VO,OUTPUT VOLTAGE (V )pRL = 10 k RL = 10 k RL = k RL = k TA = 25 k10 k100 M10 k10 k100 = 20 Log-+ADM VCM VO VO VCM ADMVCC = +15 VVEE = -15 VTA = 25 C-+ VOADMVEEVCCMC33077 , OUTPUT VOLTAGE (V)ppFigure 16.

8 Output Voltageversus FrequencyFigure 17. Open Loop Voltage Gainversus supply VoltageFigure 18. Open Loop Voltage Gainversus TemperatureFigure 19. Output Impedanceversus FrequencyFigure 20. Channel Separationversus FrequencyFigure 21. Total Harmonic Distortionversus Frequencyf, FREQUENCY (Hz)VCC, |VEE|, supply VOLTAGE (V)OPEN LOOP VOLTAGE GAIN (X1000 V/V)AVOL,RL = k f = 10 Hz VO = 2/3 (VCC -VEE)TA = 25 COPEN LOOP VOLTAGE GAIN (X1000 V/V)AVOL,TA, AMBIENT TEMPERATURE ( C)VCC = +15 VVEE = -15 VRL = k f = 10 Hz VO = -10 V to +10 Vf, FREQUENCY (Hz)CS, CHANNEL SEPARATION (dB) VOD VinCS = 20 LogDrive ChannelVCC = +15 VVEE = -15 VRL = k VOD = 20 VppTA = 25 CAV = +10AV = +100AV = +1000 THD, TOTAL HARMONIC DISTORTION (%)f, FREQUENCY (Hz)AV = 1000AV = 100AV = 10AV = , FREQUENCY (Hz)| Z |, OUTPUT IMPEDANCE ( )O k10 k100 k10 k100 k10 k100 k10 k100 M10 MVCC = +15 VVEE = -15 VRL = k AV =+ = 25 CVCC = +15 VVEE = -15 VVO = 0 VTA = 25 C Vin VO-+Measurement ChannelVCC = +15 V VO = VppVEE = -15 V TA = 25 CVinVO-+ k RA100 k AV = + = +1000AV = +100AV = +10AV = + 22.

9 Total Harmonic Distortionversus FrequencyFigure 23. Total Harmonic Distortionversus Output VoltageFigure 24. Slew Rate versus supply VoltageFigure 25. Slew Rate versus TemperatureFigure 26. Voltage Gain and Phaseversus FrequencyFigure 27. Open Loop Gain Margin and PhaseMargin versus Output Load CapacitanceVCC = +15 VVEE = -15 VV0 = -10 VppTA = 25 CTHD, TOTAL HARMONIC DISTORTION (%)f, FREQUENCY (Hz)VO, OUTPUT VOLTAGE (Vpp)THD, TOTAL HARMONIC DISTORTION (%)VCC = +15 VVEE = -15 Vf = 20 kHzTA = 25 CVCC, |VEE|, supply VOLTAGE (V)SR, SLEW RATE (V/ s) Vin = 2/3 (VCC -VEE)TA = 25 CSR, SLEW RATE (V/ s) TA, AMBIENT TEMPERATURE ( C)VCC = +15 VVEE = -15 V Vin = 20 Vf, FREQUENCY (Hz)04080120160200240 , EXCESS PHASE (DEGREES)OPEN-LOOP VOLTAGE GAIN (dB)AVOL,A , OPEN LOOP GAIN MARGIN (dB)m0102030405060 , PHASE MARGIN (DEGREES)m70CL, OUTPUT LOAD CAPACITANCE (pF)VCC = +15 VVEE = -15 VVO = 0 VPhaseGain125 C25 C-55 C-55 C25 C125 CGainPhaseVCC = +15 VVEE = -15 VRL = k TA = 25 k10 k100 k10 k100 M10 M100 + k RA100 k AV = +1000AV = +100AV = +10AV = + + k RA100 k VinVO100 k -+VO100 k -+ k -+ MC33077 = +15 VVEE = -15 VRT = R1 + R2VO = 0 VTA = 25 CGainPhase125 C and 25 C-55 CVCC = +15 VVEE = -15 V Vin = 100 mVFigure 28.

10 Phase Margin versusOutput VoltageFigure 29. Overshoot versusOutput Load CapacitanceFigure 30. Input Referred Noise Voltageand Current versus FrequencyFigure 31. Total Input Referred Noise Voltageversus Source ResistantFigure 32. Phase Margin and Gain Marginversus Differential Source ResistanceFigure 33. Inverting Amplifier Slew RateVO, OUTPUT VOLTAGE (V)VCC = +15 VVEE = -15 VTA = 25 CCL = 0 pFCL = 100 pFCL = 300 pFCL = 500 pF , PHASE MARGIN (DEGREES)mCL, OUTPUT LOAD CAPACITANCE (pF)os, OVERSHOOT (%)f, FREQUENCY (Hz)e , INPUT REFERRED Noise VOLTAGE ( ) ,INPUT REFERRED Noise CURRENT (pA)nnV/ Hz V , TOTAL REFERRED Noise VOLTAGE ( )nVCC = +15 Vf = kHzVEE = -15 VTA = 25 CVn (total) = RS, SOURCE RESISTANCE ( )nV/ Hz 010203040506070 m,PHASE MARGIN (DEGREES)RT, DIFFERENTIAL SOURCE RESISTANCE ( )A , GAIN MARGIN (dB)mV , OUTPUT VOLTAGE ( V/DIV)Ot, TIME ( s/DIV) k10 k100 k10 k100 k10 -+VO100 k -+ VinVCC = +15 VVEE = -15 VTA = 25 CVoltageCurrentR2VO-+VinR1(inRs)2 en2 4 KTRS VCC = +15 VVEE = -15 VAV = = k CL = 100 pFTA = 25 CMC33077 34.


Related search queries