Example: bachelor of science

Metallography and Microstructures of Cast Iron

Metallography andMicrostructures of Cast IronJanina M. Radzikowska, The Foundry Research Institute, Krako w, PolandCAST iron is an iron -carbon cast alloy withother elements that is made by remelting pigiron, scrap, and other additions. For differentia-tion from steel and cast steel, cast iron is definedas a cast alloy with a carbon content (min )that ensures the solidification of the final phasewith a eutectic transformation. Depending onchemical specifications, cast irons can be non-alloyed or alloyed. Table 1 lists the range ofcompositions for nonalloyed cast irons (Ref 1).The range of alloyed irons is much wider, andthey contain either higher amounts of commoncomponents, such as silicon and manganese, orspecial additions, such as nickel, chromium, alu-minum, molybdenum, tungsten, copper, vana-dium, titanium, plus graphite is a characteristic constituent ofnonalloyed and low-alloyed cast irons.

microstructure of spheroidal graphite in ductile iron close to the edge of the specimens, which were cut off from a 30 mm (1.2 in.) diameter bar and polished with and without embedding in a polymer resin, respectively. In the specimen pre-pared without embedding in a resin, the graphite was pulled out, while in the specimen that was

Tags:

  Iron, Graphite, Spheroidal, Spheroidal graphite

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Metallography and Microstructures of Cast Iron

1 Metallography andMicrostructures of Cast IronJanina M. Radzikowska, The Foundry Research Institute, Krako w, PolandCAST iron is an iron -carbon cast alloy withother elements that is made by remelting pigiron, scrap, and other additions. For differentia-tion from steel and cast steel, cast iron is definedas a cast alloy with a carbon content (min )that ensures the solidification of the final phasewith a eutectic transformation. Depending onchemical specifications, cast irons can be non-alloyed or alloyed. Table 1 lists the range ofcompositions for nonalloyed cast irons (Ref 1).The range of alloyed irons is much wider, andthey contain either higher amounts of commoncomponents, such as silicon and manganese, orspecial additions, such as nickel, chromium, alu-minum, molybdenum, tungsten, copper, vana-dium, titanium, plus graphite is a characteristic constituent ofnonalloyed and low-alloyed cast irons.

2 Precipi-tation of graphite directly from the liquid occurswhen solidification takes place in the range be-tween the temperatures of stable transformation(Tst) and metastable transformation (Tmst), whichare, respectively, 1153 C (2107 F) and 1147 C(2097 F), according to the iron -carbon this case, the permissible undercooling degreeisDTmax Tst Tmst. In the case of a higherundercooling degree, that is, in the temperaturesbelowTmst, primary solidification and eutecticsolidification can both take place completely orpartially in the metastable system, with precipi-tation of primary cementite or can also take place in the rangeof critical temperatures during solid-state trans-formations.

3 The equilibrium of phases Fec Fig. 1 spheroidal graphite in as-cast ductile iron ( ) close to the edge of the specimen,which was 30 mm ( in.) in diameter. The specimen wasembedded. As-polished. 100 Table 1 Range of chemical compositions for typical nonalloyed and low-alloyed castironsType of ironComposition, %CSiMn PSGray (FG) graphite (CG) (SG) (TG) , flake graphite ; SG, spheroidal graphite ; TG, tempered graphite . Source: Ref 1Fe Fe3C occurs only at the temperature 723 2 C (1333 4 F), while equilibrium ofphases Fec Fe Cgroccurs at the tempera-ture 738 3 C (1360 5 F). So, in the rangeof temperatures 738 to 723 C (1360 to 1333 F),the austenite can decompose only into a mixtureof ferrite with graphite instead of with cementite(Ref 2).

4 The previous considerations regard only pureiron-carbon alloys. In cast iron , which is a mul-ticomponent alloy, these temperatures can bechanged by different factors: chemical compo-sition, ability of cast iron for nucleation, andcooling rate. Silicon and phosphorus bothstrongly affect the carbon content of the dependence was defined as a carbon equiv-alent (Ce) value that is the total carbon contentplus one-third the sum of the silicon and phos-phorus content (Ref 2). Cast iron , with a com-position equivalent of approximately , solid-ifies as a eutectic. If the Ceis , it ishypereutectic; if it is , cast iron is hypoeu-tectic (Ref 3).

5 Eutectic cells are the elementary units forgraphite nucleation. The cells solidify from theseparate nuclei, which are basically graphite butalso nonmetallic inclusions such as oxides andsulfides as well as defects and material discon-tinuities. Cell size depends on the nucleation ratein the cast iron . When the cooling rate and thedegree of undercooling increase, the number ofeutectic cells also increases, and their micro-structure changes, promoting radial-sphericalshape (Ref 2).Preparation for MicroexaminationPreparation of cast iron specimens for micro-structural examination is difficult due to the needto properly retain the very soft graphite phase,when present, that is embedded in a harder ma-trix.

6 Also, in the case of gray irons with a softferritic matrix, grinding scratches can be difficultto remove in the polishing process. When shrink-age cavities are present, which is common, thecavities must not be enlarged or smeared of graphite in cast iron is a commonpolishing problem that has received considerable566 / Metallography and Microstructures of Ferrous AlloysFig. 3 Flake graphite in as-cast gray iron ( ) close to the edge of the unembedded specimen,which was 30 mm ( in.) in diameter. Fig. 2 Same as-cast ductile iron as in Fig. 1, but thespecimen was not embedded. The arrows showthe pulled-out graphite . As-polished. 100 Fig.

7 4 Same as in Fig. 3 but close to the center of thespecimen. As-polished. 100 attention. Coarse grinding is a critical stage, so,if the soft graphite is lost during coarse grinding,it cannot be recovered in subsequent steps andwill be seen as an open or collapsed cavity. Sil-icon carbide (SiC) grinding papers are preferredto emery, because SiC cuts efficiently, while em-ery paper does not, and SiC produces less dam-age. Fresh paper should always be used; nevergrind with worn paper. White iron , by contrast,contains extremely hard iron carbides that resistabrasion and tend to remain in relief above thesofter matrix after polishing (Ref 4).

8 Quality-control studies, based on image anal-ysis measurements of the amount of phases andthe graphite shape and size, also need perfectlyprepared specimens with fully retained graphitephase and with microstructural constituents cor-rectly revealed by metallographicspecimen preparation process for microstructuralinvestigations of cast iron specimens usuallyconsists of five stages: sampling, cold or hotmounting, grinding, polishing, and etching witha suitable etchant to reveal the stage presents particular problems in thecase of cast iron . Of course, the graphite phaseis studied after polishing and before the first step selecting the testlocation or locations to be evaluated metallo-graphically.

9 Usually, cast iron castings have aconsiderable variation in microstructure betweensurface and core. Selection of the test location isvery important to obtain representative resultsfrom the microstructural examination. Samplescan be obtained by cutting them out from eithera large or small casting or from standard testbars, such as microslugs, ears, or keel bars; how-ever, the microstructure of these pieces may notbe representative for the actual casting due tosubstantial differences in the solidification saws, such as large, abrasive cutoffsaws, band saws, or power hacksaws, can beused for dividing medium-sized casting intosmaller samples.

10 In the case of very large cast-ings, flame cutting may be used. Next, the piecesFig. 5 Temper graphite in malleable iron ( ) after grinding on P1000 SiCwaterproof paper. The casting was annealed at 950 C(1740 F), held 10 h, furnace cooled to 720 C (1330 F),held 16 h, and air cooled. The arrows show the pulled-outgraphite. As-polished. 400 Fig. 6 Same as in Fig. 5 but after polishing with 9lmdiamond suspension. The arrows show thepulled-out graphite . As-polished. 400 Metallography and Microstructures of Cast iron / 567can be reduced to the desired size for metallo-graphic specimens by using a laboratory abra-sive cutoff saw or a band saw.


Related search queries