Example: biology

NLR: organisatie, doel en activiteiten - …

House rules No smoking No pictures Turn off mobile phones Tight schedule List of participants available 2. Programma uur Inloop en ontvangst uur Inleiding en recente (markt)ontwikkelingen: door Frederik Lodeizen (FDP) en Ronald Kousbroek (Aluminium Centrum). uur Metal Additive Manufacturing; principes en toepassingen: door Henk Buining (TNO). uur 3D printen in metaal, een verhaal apart; on- en mogelijkheden die 3D printing biedt voor metaalproductie: door Henk Anema (Mundo 3D Printing). uur Pauze uur Additive Manufacturing in Metaal; ontwikkelingen bij NLR: door Marc de Smit (NLR). uur Rondleiding NLR, uitwisseling van ervaringen en netwerken uur Afsluiting 3. 4. Metal-AM for Aerospace and high-end applications Great opportunities and serious challenges 04-11-2015. Ir. Marc J. de Smit R&D Engineer Structures Technology Aerospace Vehicles Division Phone +31 88 511 4234. E-mail Content Short introduction NLR. Metal Additive Manufacturing at NLR. Metal Additive Manufacturing Initiative 06-11-2015 6.

Metal-AM for Aerospace and high-end applications Great opportunities and serious challenges 04-11-2015 Ir. Marc J. de Smit R&D Engineer Structures Technology

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of NLR: organisatie, doel en activiteiten - …

1 House rules No smoking No pictures Turn off mobile phones Tight schedule List of participants available 2. Programma uur Inloop en ontvangst uur Inleiding en recente (markt)ontwikkelingen: door Frederik Lodeizen (FDP) en Ronald Kousbroek (Aluminium Centrum). uur Metal Additive Manufacturing; principes en toepassingen: door Henk Buining (TNO). uur 3D printen in metaal, een verhaal apart; on- en mogelijkheden die 3D printing biedt voor metaalproductie: door Henk Anema (Mundo 3D Printing). uur Pauze uur Additive Manufacturing in Metaal; ontwikkelingen bij NLR: door Marc de Smit (NLR). uur Rondleiding NLR, uitwisseling van ervaringen en netwerken uur Afsluiting 3. 4. Metal-AM for Aerospace and high-end applications Great opportunities and serious challenges 04-11-2015. Ir. Marc J. de Smit R&D Engineer Structures Technology Aerospace Vehicles Division Phone +31 88 511 4234. E-mail Content Short introduction NLR. Metal Additive Manufacturing at NLR. Metal Additive Manufacturing Initiative 06-11-2015 6.

2 Where is NLR located? The Netherlands NLR Amsterdam NLR Flevoland 7. Mission Main knowledge enterprise for aerospace technology in the Netherlands Render aviation safer, more sustainable and efficient 8. Past and Present Past: Establishment Government Service for Aeronautical Studies in 1919. In 1937, this became an independent, non-profit organization 9. Past and Present Present: One of the largest technological institutes in the Netherlands, with 650 employees Key technological and scientific expertise to aerospace activities in the Netherlands and abroad 10. Metal AM at NLR. Metal Additive Manufacturing Technology Centre (MAMTeC) established in 2013. >40 years experience in testing, analysing, modelling and qualifying aerospace metals Well equipped test lab 06-11-2015. Examples of NLR Metal AM activities Research for Dutch Defence Parts for wind tunnel models Structural space applications Cooling of electronic components in space Prototyping for various applications Process development new materials Process development Multimaterial AM.

3 06-11-2015 12. There are great opportunities Large freedom of design Reduction of weight Complex internal structures Boost product performance 06-11-2015 13. And there are challenges 06-11-2015 14. Product performance Good understanding is essential for production of structural parts 06-11-2015 15. Materials (Metals) for Additive Manufacturing Programme Four years programme on Metal-AM for high tech applications NLR & TNO Initiative Public-Private Partnership with international participants 06-11-2015 16. Technical objectives Efficient AM processing parameter optimisation Database with design values Post-processing ; Powder removal, heat treatments, surface finishing Metal-AM Design guide lines, methods and tools, for AM manufacturing Material qualification and process certification methodologies for AM. Technology demonstrators 06-11-2015 17. Process parameters optimisation Material parameters Particle size distribution Particle Shape Chemical composition Moisture content Oxygen & Nitrogen pick-up Thermal conductivity Radiation absorptivity Specific heat capacity Thermal diffusivity Melting point Latent heat of fusion Surface tension Design Melt viscosity Face orientation.

4 Thickness variations Supports Ratio cross section area-perimeter .. Criteria Laser based Powder Build rate Bed Fusion Porosity Surface roughness Process parameters Accuracy Layer thickness Residual stresses Laser power Mechanical performance Wave length Reliability/repeatability Laser spot size, intensity profile .. Focus offset Scan speed Hatch distance Scan strategy Temperature (gradients). Inert gas type, velocity, .. Apparent density of powder layer Post processing Optical system dynamic properties Powder removal Time between exposure Heat treatment .. Removal supports Surface treatments .. 06-11-2015 18. Process parameters optimisation Process parameters Powder application Laser parameters Scan pattern/strategy Environment 06-11-2015 19. Process parameters optimisation Process parameters Scan pattern parameters Hatch distance Scan strategy Time between exposure 06-11-2015 20. Quantification effect of variations Effect of variations in material and AM- process parameters on design values A lot of variations are possible 06-11-2015 21.

5 Quantification effect of variations Granulomorphometry Particle size distribution Particle Shape Composition Chemical composition Moisture content Oxygen & Nitrogen pick-up Pollution 06-11-2015 22. Quantification effect of variations Material parameters: Particle size distribution Particle shape Chemical composition Virgin or recycled material Moisture, oxygen or nitrogen content Measure powder layer densities Produce test samples Porosity Mechanical performance 06-11-2015 23. Quantification effect of variations Influence particle size distribution Recycled New 06-11-2015 24. Quantification effect of variations Influence particle size distribution on powder layer density 100. 90. 80. 70. 60. 50. 40. 30. 20. 10. 0. sample V (new) sample VI (used). 06-11-2015 25. Database with design values Carry out tests according to ASTM or ISO standards: Static Crack growth Fatigue Density Hardness Anisotropy Creep 06-11-2015 26. Process monitoring Objective: Evaluate methods to monitor important process parameters in metal-AM.

6 Activities: Evaluate different metal-AM monitoring systems Production tests on metal-AM machine with monitoring system installed Source: SLM Solutions 06-11-2015 27. Building on existing products Objective: evaluate metal-AM Layer deposition on existing products Build lower part of Machine microstructure samples Heat Remove top Finish build Heat microstructure with variation of treatment layer of test parts treatment samples parameters (DOE). Microscope analysis Select methods/parameters for optimum interface properties Build lower part of tensile Heat Remove top Build rest of Heat Machine tensile test parts and treatment layer test parts treatment test samples microstructure samples Tensile test Apply new Machine Build benchmark Heat Remove top Heat material with microstructure parts treatment layer treatment metal-AM samples Microscope analysis 06-11-2015 28. Building on existing products Variation of process parameters interface Determine accuracy Analyse interface porosity, microstructure & hardness 29.

7 Post processing SLM Workflow Design Build preparation Production Powder removal methods Heat treatments Post treatments Removal from substrate plate Fast removal of supports Surface treatments 06-11-2015 30. Standardisation/ Qualification Objective: Develop methodologies for: specification of powder materials, Process certification, Material qualification, Part qualification Activities: Contact with other research groups and Aviation Safety Agencies (EASA, FAA). Use information from other activities Translate information into a methodology for metal-AM certification/qualification 06-11-2015 31. Design rules & tools Basic design rules are available Still failures do occur Optimisation for AM= difficult Tools do not take limitations into account Residual stresses? X. 06-11-2015 32. Design rules & tools Objectives: Overview of design guide lines for metal AM. Develop design tools that take Metal AM. limitations into account Computational mechanics expertise applied to predict residual stresses and deformations X.

8 06-11-2015 33. Design tools & Virtual manufacturing Modelling Melt pool simulation Design tools development Computational mechanics expertise applied to predict residual stresses and deformations 06-11-2015 34. Design tools & Virtual manufacturing Modelling Melt pool simulation Design tools development Computational mechanics expertise applied to predict residual stresses and deformations 06-11-2015 35. Design tools & Virtual manufacturing is supported by fundamental research carried out by two PhD students (TopAM). A. van Keulen, Department of Precision and Microsystems Engineering, TU Delft A. van den Boogaard, Mechanics of Solids, Surfaces and Systems , Nonlinear Solid Mechanics, Engineering Technology, Universiteit Twente 06-11-2015 36. Motor inlet Aluminium Voor de NL industrie Aeronamic Almelo 3-D print Gietstuk 37. Multimaterial Heat exchanger Inconel 718. SS316. Inspired by NASA's Fission Surface Power system (FSP) NaK heat exchanger 38. Summary Great opportunities Yes, there are challenges We have (nice) work to do!

9 06-11-2015 39. Netherlands Economic Mission to Brazil 06-11-2015 40.


Related search queries