Example: stock market

Notes on Calculus II Integral Calculus - NU Math Sites

22, , a Function(MeanValueTheorem) Functionsas Power Integrals119 IntroductionThesenotesareintendedtobe a summaryof themainideasincourseMATH214-2: Integral Calculus . I may keepworkingonthisdocument as thecoursegoes on,sothesenoteswillnotbe completelyfinisheduntil theendof Stewart: Calculus ,ConceptsandContexts(2th ed.), willfollow youfindany typos or errors,or youhave any suggestions,please,donothesitateto emailme,or usethewebformforfeedback theregionSunderthecurvey=f(x) fromatob,wherefis (x)SInordertoestimatethatareawe beginby dividingtheinterval[a, b]intonsubintervals[x0, x1], [x1, x2], [x2, x3],.., [xn 1, xn], eachof length x= (b a)/n(soxi=a+i x). thestripbetweenxi 1andxicanbe approximatedas theareaof therectangleof width xandheightf(x i), wherex iis a samplepoint in theinterval [xi, xi+1].

These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus. I may keep working on this document as the course goes on, so these notes will not be completely finished until the end of the quarter. The textbook for this course is Stewart: Calculus, Concepts and Contexts (2th ed.), Brooks/Cole. With few ...

Tags:

  Notes, Calculus

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Notes on Calculus II Integral Calculus - NU Math Sites

1 22, , a Function(MeanValueTheorem) Functionsas Power Integrals119 IntroductionThesenotesareintendedtobe a summaryof themainideasincourseMATH214-2: Integral Calculus . I may keepworkingonthisdocument as thecoursegoes on,sothesenoteswillnotbe completelyfinisheduntil theendof Stewart: Calculus ,ConceptsandContexts(2th ed.), willfollow youfindany typos or errors,or youhave any suggestions,please,donothesitateto emailme,or usethewebformforfeedback theregionSunderthecurvey=f(x) fromatob,wherefis (x)SInordertoestimatethatareawe beginby dividingtheinterval[a, b]intonsubintervals[x0, x1], [x1, x2], [x2, x3],.., [xn 1, xn], eachof length x= (b a)/n(soxi=a+i x). thestripbetweenxi 1andxicanbe approximatedas theareaof therectangleof width xandheightf(x i), wherex iis a samplepoint in theinterval [xi, xi+1].

2 Sothetotalareaunderthecurve isapproximatelythesumn i=1f(x i) x=f(x 1) x+f(x 2) x+ +f(x n) x .Thisexpressionis betterthethinerthestripsare,andwe caniden-tifytheexactareaunderthegraphoff withthelimit:A= limn n i=1f(x i) xAslongasfis continuousthevalueof thelimitis independentof thesamplepointsx represented baf(x)dx, andis calleddefiniteintegralofffromatob: baf(x)dx= limn n i=1f(x i) xThesymbolsat thelefthistoricallywereintendedto meananinfinitesum,representedby a long S (theintegralsymbol ), of infinitelysmallamountsf(x)dx. Thesymboldxwas interpretedas thelengthofan infinitesimal interval, sortof what xbecomesforinfiniten. Thisinterpretationwas laterabandoneddueto thedifficultyof reasoningwithinfinitesimals,butwe : Notethatin intervalswheref(x) is negative thegraphofy=f(x) liesbelow thex-axisandthedefiniteintegraltakes a definiteintegralgives thenetareabetweenthegraphofy=f(x) andthex-axis, ,thesumoftheareasof theregionswherey=f(x) is above thex-axisminusthesumof theareasof theregionswherey=f(x) is below willsoonstudysimpleandef-ficient methods to evaluateintegrals,butherewe willlookat :Findthevalueof thedefiniteintegral 10x2dxfromitsdefinitionin termsof : We dividetheinterval[0,1] intonequalparts,soxi=i/nand x= 1/n.

3 Nextwe mustchoosesomepointx iin each subinterval[xi 1, xi]. Herewe willusetheright endpoint of theintervalx i= :n i=1(in)21/n=1n3n i=1i2=1n32n3+ 3n2+n6=2 + 3/n+ 2 : 10x2dx= limn 2 + 3/n+ 2/n26= check thattheresultdoes notdependonthesamplepoints used,let sredothecomputationusingnow theleftendpoint ofeach subinterval:n i=1(i 1n)21/n=1n3n i=1(i 1)2=1n32n3 3n2+n6=2 3/n+ 2 : 10x2dx= limn 2 3/n+ 2/n26= com-putingRiemannsumsusingxi= (xi 1+xi)/2 = midpoint of eachinterval as samplepoint. Thisyieldsthefollowingapproximationforth evalueof a definiteintegral: baf(x)dx n i=1f(xi) x= x[f(x1) +f(x2) + +f(xn)].Example: UsetheMidpoint Rulewithn= 5 to approximate : Thesubintervalsare[0, ],[ , ],[ , ],[ , ],[ ,1],themidpoints , , , , ,and x= 1/5, so 10x2dx 15[ + + + + ]= = ,which agreesupto theseconddecimalplacewiththeactualvalue1 show how theconceptofdefiniteintegralcanbe appliedto particularwe studytheproblemof findingthedistancetraveledby an objectwithvariablevelocity duringa certainperiod of thevelocityvwereconstant we couldjustmultiplyit by thetimet: distance=v t.

4 Otherwisewe canapproximatethetotaldistancetraveledby dividingthetotaltimeinterval into smallintervalsso thatin each of themthevelocity variesverylittleandcancanbe ,assumethatthebodystartsmovingattimetsta rtandfinishesat timetend, andthevelocity is variable, ,isa functionof timev=f(t). We dividethetimeinterval intonsmallintervals[ti 1, ti] of length t= (tend tstart)/n, choosesomeinstantt ibetweenti 1andti, andtakev=f(t i) as theapproximatevelocity ofthebodybetweenti 1andti. Thenthedistancetraveledduringthattimeint erval is approximatelyf(t i) t, andthetotaldistancecanbeapproximatedas thesumn i=1f(t i) tTheresultwillbe moreaccuratethelargerthenumber of subintervalsis, andtheexactdistancetraveledwillbelimitof theabove expressionasngoes to infinity:limn n i=1f(t i) tThatlimitturnsoutto bethefollowingdefiniteintegral: tendtstartf(t) theDefiniteIntegral.

5 (1)Integralof a constant: bac dx=c(b a).(2)Linearity:(a) ba[f(x) +g(x)]dx= baf(x)dx+ bag(x)dx.(b) bacf(x)dx=c baf(x)dx.(3) (a) caf(x)dx+ bcf(x)dx= baf(x)dx.(b) abf(x)dx= baf(x)dx,(c) aaf(x)dx= 0.(4)Comparison:(a)f(x) 0 baf(x)dx 0.(b)f(x) g(x) baf(x)dx bag(x)dx.(c)m f(x) M m(b a) baf(x)dx M(b a). a continuousfunctionandFisanantiderivative off, ,F (x) =f(x), then baf(x)dx=F(b) F(a).Example: Find : Anantiderivative ofx2isx3/3, hence: 10x2dx=[x33]10=133 033= anantiderivative of a functionf, ,F (x) =f(x), thenforany constantC,F(x) +Cis anotherantiderivative off(x). Thefamilyof allantiderivatives offis calledindefiniteintegraloffandrepresente d: f(x)dx=F(x)+C .Example: x2dx=x33+ canmake anintegraltablejustby reversinga tableof derivatives.(1) xndx=xn+1n+ 1+C(n6= 1).

6 (2) 1xdx= ln|x|+C.(3) exdx=ex+C.(4) axdx=axlna+C.(5) sinx dx= cosx+C.(6) cosxdx= sinx+C.(7) sec2x dx= tanx+ (8) csc2x dx= cotx+C.(9) secxtanx dx= secx+C.(10) cscxcotx dx= cscx+C.(11) dxx2+ 1= tan 1x+C.(12) dx 1 x2= sin 1x+C.(13) dxx x2 1dx= sec 1|x|+ a rateof changeisthetotalchange: baF (x)dx=F(b) F(a).Thisis justa restatementof applicationwe findthenetdistanceordisplace-ment,andthe totaldistancetraveledby anobjectthatmoves alongastraight linewithpositionfunctions(t). Thevelocity of theobjectisv(t)=s (t). Thenetdistanceor displacement isthedifferencebetweenthefinalandtheinit ialpositionsof theobject,andcanbe foundwiththefollowingintegral t2t1v(t)dt=s(t2) s(t1).In thecomputationof thedisplacement thedistancetraveledby theobjectwhenitmoves to theleft(whilev(t) 0) is subtractedfromthedistancetraveledtotheri ght (whilev(t) 0).

7 Ifwe want to findthetotaldistancetraveledwe needto addalldistanceswithapositivesign,andthis is accomplishedby integratingtheabsolutevalueof thevelocity: t2t1|v(t)|dt= : Findthedisplacement andthetotaldistancetraveledbyanobjecttha tmoves withvelocityv(t) =t2 t 6 fromt= 1 tot= : Thedisplacement is 41(t2 t 6)dx=[t33 t22 6t]41=(433 422 6 4) (133 122 6)= 323 ( 376)= 92 Inordertofindthetotaldistancetraveledwe needtoseparatetheintervalsin which thevelocity takes valuesofdifferent at whichv(t) =0, ,t2 t 6 = 0 t= 2 andt= 3. Sincewe areinterestedonlyin whathappensin [1,4]weonlyneedto lookat theintervals[1,3] and[3,4].Sincev(1)= 6,thevelocity is negative in [1,3],andsincev(4)= 6, thevelocity ispositive in [3,4].Hence: 41|v(t)|dt= 31[ v(t)]dt+ 43v(t)dt= 31(t2 t 6)dt+ 43(t2 t 6)dt=[ t33+t22+ 6t]31+[t33 t22 6t]43=223+176= Calculus (FTC)connectsthetwo branchesof cal- thefollowing:Supposefis continuouson[a, b].

8 Then:(1)Thefunctiong(x) = xaf(t)dtis anantiderivative off, ,g (x) =f(x).(2)(EvaluationTheorem)IfFis an antiderivative off, (x) =f(x), then baf(x)dx=F(b) F(a).Thetwo partsof thetheoremcanbe rewrittenlike this:(1)ddx xaf(t)dt=f(x).(2) baF (x)dx=F(b) F(a).Sothetheoremstatesthatintegrationan ddifferentiationarein-verseoperations, ,thederivative of anintegralof a functionyieldstheoriginalfunction,andthe integralof a derivative alsoyieldsthefunctionoriginallydifferent iated(uptoa constant).Example: Findddx : We solve thisproblemin two :g(x) = x20t3dt=[t44]x20=(x2)44=x84,henceg (x) =8x74= ,usingtheFTC:h(u) = u0t3dt h (u) = we haveg(x) =h(x2), hence(usingthechainrule):g (x) =h (x2) 2x= (x2)3 2x= a basedonthefollowingidentity betweendifferentials(whereuis a functionofx):du=u dx.

9 Hencewe canwrite: f(u)u dx= f(u)duor usinga slightlydifferent notation: f(g(x))g (x)dx= f(u)duwhereu=g(x).Example: Find 1 +x22x : Usingthesubstitutionu= 1 +x2we get 1 +x22x dx= u u dx= u du=23u3/2+C=23(1 +x2)3/2+ thetimetheonlyproblemin usingthismethod of integra-tionis findingtheright : Find cos2x : We want towritetheintegralas cosu du, socosu=cos2x u= 2x,u = 2. Sincewe donotseeanyfactor2 writeit, takingcareof dividingby 2 outsidetheintegral: cos2xdx=12 cos2x2dx=12 cosu u dx=12 cosu du=12sinu+C(always remember to undothesubstitution)=12sin2x+ generalwe needto lookattheintegrandas a functionof someexpression(whichwe willlateridentifywithu) multipliedby thede-rivative of : Find e x2x : We seethatxis almost ,thederivative of x2, so we usethesubstitutionu= x2,u = 2x, hencein orderto getu insidetheintegralwe dothefollowing: e x2x dx= 12 e x2 eu( 2x)dx du= 12 eudu= 12eu+C= 12e x2+ hardto seeuntilwe make somein-genioustransformationin : Find tanx : Heretheideais towritetanx=sinxcosxandusethat(cosx) = sinx, so we makethesubstitutionu= cosx,u = sinx.

10 Tanx dx= sinxcosxdx= u udx= 1udu= ln|u|+C= ln|cosx|+ generalwe needto identifyinsidetheintegralsomeexpressiono ftheformf(u)u , wherefis somefunctionwitha : Find exe2x+ : Let swrite exe2x+ 1dx=k f(u)u dx(wherekis someconstant to bedeterminedlater)andtryto identifythefunctionf,theargumentuanditsd erivativeu . Since(ex) =exit seemsnaturalto choseu=ex,u =ex, soe2x=u2and exe2x+ 1dx= u u2+ 1dx= 1u2+ 1du= tan 1u+C=tan 1(ex) + no much morethatcanbe saidin general,theway to learnmoreis justto substitutionof theformu= functionofx, we may tryachangeof variableof theformx= functionof someothervariablesuch ast,andwritedx=x (t)dt, wherex = derivative : Find 1 : Herewe writex= sint, sodx= cost dt,1 x2= 1 sin2t= cos2t, and 1 x2dx= cost xcost dt dx= cos2t dt.


Related search queries