Example: dental hygienist

Numerical Methods in Heat, Mass, and Momentum Transfer

DraftNotesME608 NumericalMethodsinHeat,Mass, ,BlockStructured, ,Consistency, .. ,heattransfer,andotherrelatedphysicalphe nomena, ,themomentumequationsexpresstheconservat ionoflinearmomentum; , Momentum ,energy, , ,themomentumequationexpressestheprincipl eofconservationoflinearmomentumintermsof themomentumperunitmass, , ,whichmaybemomentumperunitmass,ortheener gyperunitmass, x y isgovernedbyaconservationprinciplethatst atesAccumulationof inthecontrolvolumeovertime tNetinfluxof intocontrolvolumeNetgenerationof insidecontrolvolume( )9 Jxx+x yx J :ControlVolumeTheaccumulationof inthecontrolvolumeovertime tisgivenby t t t( )Here, isthedensityofthefluid, isthevolumeofthecontrolvolume( x y z) insidethecontrolvolumeovertime tisgivenbyS t( )whereSisthegenerationof ,thenetinfluxof comingintothecontrolvolumethroughfacex,a ndJx xthefluxleavingthefacex intothecontrolvolumeovertime tisJxJx x y z tJyJy y x z tJzJz z x y t( )Wehavenotyetsaidwhatphysicalmechanismsc ausetheinfluxof.

Mathematical Modeling In order to simulate fluid flow, heat transfer, and other related physical phenomena, it is necessary to describe the associated physics in mathematical terms. Nearly all the physical phenomena of interest to us in this book are governed by principles of

Tags:

  Methods, Physics, Mathematical

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Numerical Methods in Heat, Mass, and Momentum Transfer

1 DraftNotesME608 NumericalMethodsinHeat,Mass, ,BlockStructured, ,Consistency, .. ,heattransfer,andotherrelatedphysicalphe nomena, ,themomentumequationsexpresstheconservat ionoflinearmomentum; , Momentum ,energy, , ,themomentumequationexpressestheprincipl eofconservationoflinearmomentumintermsof themomentumperunitmass, , ,whichmaybemomentumperunitmass,ortheener gyperunitmass, x y isgovernedbyaconservationprinciplethatst atesAccumulationof inthecontrolvolumeovertime tNetinfluxof intocontrolvolumeNetgenerationof insidecontrolvolume( )9 Jxx+x yx J :ControlVolumeTheaccumulationof inthecontrolvolumeovertime tisgivenby t t t( )Here, isthedensityofthefluid, isthevolumeofthecontrolvolume( x y z) insidethecontrolvolumeovertime tisgivenbyS t( )whereSisthegenerationof ,thenetinfluxof comingintothecontrolvolumethroughfacex,a ndJx xthefluxleavingthefacex intothecontrolvolumeovertime tisJxJx x y z tJyJy y x z tJzJz z x y t( )Wehavenotyetsaidwhatphysicalmechanismsc ausetheinfluxof.

2 Forphysicalphenomenaofinteresttous, istransportedbytwoprimarymechanisms:diff usionduetomolecularcollision, ,thediffusionfluxmaybewrittenasJdiffusio nx x( )TheconvectivefluxmaybewrittenasJconvect ionx u ( )10 Here, u xxJx x u xx x( )where ,anddividingby t t t tJxJx x xJyJy y yJzJz z zS( )Takingthelimit x y z t0,weget t Jx x Jy y Jz zS( ) t x u y v z w x x y y z zSor,invectornotation t V S( ) ,wecan,inprinciple, ,whichmaybeenergyperunitmass(J/kg),ormom entumperunitmass(m/s) ,isthegenerationof wereenergyperunitmass, ,intheabsenceofgen-eration,thedivergence ofthefluxiszero: J0( )whereJ= , t V S( ) ,theconser-vativeformisadirectstatementa bouttheconservationof intermsofthephysicalfluxes(convectionand diffusion).

3 , ,heatandmasstransfer,aswellasothertransp ortequations,mayberepresentedbytheconser vativeform, . , , ,theenergyequationmaybewrittenintermsoft hespecificenthalpyhas h t Vh k TSh( ) ,dhCpdT( ) h t Vh kCp hSh( ) ,with h, u t Vu u p xSu( )Here,Sucontainsthosepartsofthestressten sornotappearingdirectlyinthediffusionter m,and p ,with u, andS p ,Yi, slawisassumedvalid,thegoverningconservat ionequationis Yi t VYi i YiRi( ) ,with Yi, i, ,heatandmasstransfercanbecastintoasingle generalformwhichweshallcallthegeneralsca lartransportequation: t V S( )Ifnumericalmethodscanbedevisedtosolveth isequation,wewillhaveaframeworkwithinwhi chtosolvetheequationsforflow,heat, (PDE)governingthespatialandtemporalvaria tionof.

4 Iftheproperties and ,orthegenerationtermS arefunctionsof , , xxb xyc yyd xe yf g0( )Thecoefficientsa,b,c,d,e,fandgarefuncti onsofthecoordinates(x,y),butnotof ( ) , , xk T x0( )withT0T0 TLTL( )Forconstantk,thesolutionisgivenbyTxT0 TLT0Lx( ) , , andCpareconstant, T t 2T x2( )where k ( )Usingaseparationofvariablestechnique,we maywritethesolutiontothisproblemasTxtT0 n1 Bnsinn xLe n2 2L2t( )whereBn2LL0 TixT0sinn xLdxn123( ) (x,t)ateverypointinthedomain,justaswithe llipticPDE ( ,conditionsatt0).Nofinalconditionsarereq uired,forexampleconditionsatt .Wedonotneedtoknowthefuturetosolvethispr oblem! , , .Here, , ,forexample, , ,U,isaconstant; , : t CpT x CpUT0( )withTx0 TiTx0tT0( ) ( )ortoputitanotherwayTxtTifortxUT0fortxU( )ThesolutionisessentiallyastepinTtraveli nginthepositivexdirectionwithavelocityU, (x0) , ( ) ,theequationexhibitsmixedbehavior,withth ediffusiontermstendingtobringinelliptici nfluences, , :ConvectionofaStepProfileTxT0 Tix1x2t = x /U1t = x /U2t =.

5 TemperatureVariationwithTime18 Thoughitispossibletodevisenumericalmetho dswhichexploittheparticularna-tureoftheg eneralscalartransportequationincertainli mitingcases, ,wewillhavetodealwithcoupledsetsofequati ons, , , ,convection, ,parabolicandhyperbolicequations, , ,weexaminenumericalmethodsforsolvingthis typeofequation, ,consistency, asafunctionoftheindependentvariables(xyz t).Thenumericalsolution,ontheotherhand,a imstoprovideuswithvaluesof ,thoughwemayalsoseethemreferredtoasnodes orcellcentroids, , wewillberequiredtoassumehow , ,weprescribehow variesinthelocalneighborhoodsurroundinga gridpoint, , :AnExampleofaMeshvaluesof .Itisthesevaluesof ,letussaythattheaccuracyofthenumericalso lution, ,itsclosenesstotheexactsolution,dependso nlyonthediscretizationprocess,andnotonth emethodsemployedtosolvethediscreteset( ,thepathtosolution).

6 Thepathtosolutiondetermineswhetherweares uccessfulinobtainingasolution, (Forsomenon-linearproblems, ,weshallnotpursuethislineofinvestigation here.)Sincewewishtogetananswertotheorigi naldifferentialequation, , , (Vertex) (Weshallusethetermsmeshandgridinterchang eablyinthisbook). (sometimescalledtheelement). , , , ,ourinterestliesinanalyzingdomainswhicha reregularinshape:rect-angles,cubes,cylin ders, , (a).Thegridlinesareorthogonaltoeachother , ,however, (b).Here,gridlinesarenotnecessarilyortho gonaltoeachother, ,stairsteppingoccursatdomainboundaries, , ,inflowsdominatedbywallshear, ,BlockStructured, , ,themeshisdividedintoblocks,andthe23(b)( a) , , ,andasaresult, , , , ,structuredquadrilateralsandhexahedraare well-suitedforflowswithadominantdirectio n, ,ascom-putationalfluiddynamicsisbecoming morewidelyusedforanalyzingindustrialflow s, ,tri-anglesandtetrahedraareincreasinglyb eingused, , :Non-ConformalMesh27(e)(f)(c)(a)(b)(d) :CellShapes.

7 (a)Triangle,(b)Tetrahedron,(c)Quadrilate ral,(d)Hexahe-dron,(e)Prism,and(f) ,prismsareusedinboundarylayers, , ,orassociatethemwiththecell, , ,thenumberofcellsisapproximatelyequaltot henumberofnodes, , ,forexample,therearetwiceasmanycellsasno des, ,bothschemeshaveadvantagesanddisadvantag es,andthechoicewilldepend28 FlowBoundary ,wehavealludedtothediscretizationmethod, : d2 dx2S0( ) ,wewrite 1 2 xd dx2 x22d2 dx22O x3( )and 3 2 xd dx2 x22d2 dx22O x3( )ThetermO x3indicatesthatthetermsthatfollowhaveade pendenceon dx2 3 12 xO x2( )Byaddingthetwoequationstogether,wecanwr ited2 dx22 1 32 2 x2O x2( )29 xx :One-DimensionalMeshByincludingthediffus ioncoefficientanddroppingtermsofO x2orsmaller,wecanwrite d2 dx22 1 32 2 x2( )ThesourcetermSisevaluatedatthepoint2usi ngS2S 2( ) x2 2 x2 1 x2 3S2( ) ,weobtainansetofalgebraicequationsinthed iscretevaluesof.

8 ,theyarenotguaranteedtodosoinmorecomplic atedcases, , , beanapproximationto .Since isonlyanapproxima-tion, ,sothatthereisaresidualR:d2 dx2SR( )Wewishtofinda suchthatdomainWRdx0( )Wisaweightfunction, ,i12N,whereNisthenumberofgridpoints, ,werequiredomainWiRdx0i12N( )TheweightfunctionsWiaretypicallylocalin thattheyarenon-zerooverelementi, ,weassumeashapefunctionfor , ,assumehow , (sometimescalledthecontrolvolumemethod)d ividesthedomainintoafinitenumberofnon-ov erlappingcellsorcontrolvolumesoverwhichc onservationof , :ddx d dxS0( )Consideraone-dimensionalmesh, atcellcentroids,denotedbyW, d dxdxewSdx0( )sothat d dxe d dxwewSdx0( ) , xw xeWPEew :ArrangementofControlVolumesWenowmakeapr ofileassumption, ,wemakeanassumptionabouthow varieslinearlybetweencellcentroids,wemay write e E P xe w P W xwS x0( ) ,weobtainaP PaE EaW Wb( )whereaE e xeaW w xwaPaEaWbS x( ) ,yieldingasetofalgebraicequations,asbefo re; , , maybeinaccurate, d.

9 Theseequationsmaybelinear( )ortheymaybenon-linear( ).Thesolutiontechniquesareindependentoft hediscretizationmethod, ,weareguaranteedthatthereisonlyonesoluti on,andifoursolutionmethodgivesusasolutio n, ( ) ,wedonothavethisguarantee,andtheanswerwe getmaydependonfactorsliketheinitialguess , , ,wemaywritetheresult-ingsystemofalgebrai cequationsasA B( )whereAisthecoefficientmatrix, 1 2 Tisavectorconsistingofthediscretevalueso f , ,whereby iscomputedfrom A1B( )Asolutionfor , , ,Aissparse, ,forexample,forpurediffusion, ,thetri-diagonalmatrixalgorithm(TDMA), , , ,thematrixAisusuallynon-linear, ,thedirectmethodisappliedoverandoveragai n, , using PaE EaW WbaP( )Theneighborvalues, Eand Warerequiredfortheupdateof ,pointswhichhavealreadybeenvis-itedwillh averecentlyupdatedvaluesof ,forexample,requirethatthemaximumchangei nthegrid-pointvaluesof belessthan01%.

10 Ifthecriterionismet, , , ( ) ; ,aE,aWandbcanbecomputedontheflyifdesired ,sincetheentirecoefficientmatrixforthedo mainisnotrequiredwhenupdatingthevalueof , ,theymaybeupdatedusingprevailingvaluesof , , ,Consistency,StabilityandConvergenceInth issection, , x2, ,thetermsthatareneglectedareofO ,ifwerefinethemesh,weexpectthetruncation errortodecreaseas , , , , (Forunsteadyproblems,bothspatialandtempo raltruncationerrorsmustbeconsidered).Wea reguaranteedthisifthetruncationerrorisso mepowerofthemeshspacing x(or t).Sometimeswemaycomeacrossschemes35wher ethetruncationerrorofthemethodisO x ,consistencyisnotguar-anteedunless xisdecreasedfasterthan , ,forexample, , ,wewillusenumericalmethodswhichcomputeth esolutionatdiscreteinstantsoftime, ,forexample(assumingthatasteadystateexis ts).


Related search queries