Example: confidence

Renewables in Transport 2050 - LBST

Report 1086 - 2016 Frankfurt am MainGemeinsame Forschung. Gemeinsamer in Transport 2050 Empowering a sustainable mobility future with zero emission fuels from renewable electricityKraftstoffstudie IIFinal ReportH ft 910 2010 Forschungsvereinigung Verbrennungskraftmaschinen Stra e 18 Telefon: 069 / 66 03 16 8160528 FrankfurtTelefax: 069 / 66 03 16 73E-Mail: Website: lh l ti i t Ottt II (Ab hlb i ht)Das Urheberrecht an diesem Bericht mit s mtlichen Beilagen verbleibt der FVV bernimmt keine Gew hr f r die Richtigkeit, die Genauigkeit und Vollst ndigkeit der Angaben sowie die Beachtung privater Rechte Dritter. Ohne schriftliche Genehmigung der FVV darf der Bericht weder kopiert noch vervielf ltigt IN Transport 2050 EMPOWERING A SUSTAINABLE MOBILITY FUTURE WITH ZERO EMISSION FUELS FROM renewable ELECTRICITY EUROPE AND GERMANY AN EXPERTISE FOR THE FVV FORSCHUNGSVEREINIGUNG VERBRENNUNGSKRAFTMASCHINEN (RESEARCH ASSOCIATION FOR COMBUSTION ENGINES) Patrick R.

renewables. in. transport 2050 e. mpowering a sustaina. ble mobility future with zero emission fuels from renewable electricity –europe and germany – a. n . e. xpertise for . the

Tags:

  Transport, 2005, Renewable, Renewables in transport 2050, Transport 2050

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Renewables in Transport 2050 - LBST

1 Report 1086 - 2016 Frankfurt am MainGemeinsame Forschung. Gemeinsamer in Transport 2050 Empowering a sustainable mobility future with zero emission fuels from renewable electricityKraftstoffstudie IIFinal ReportH ft 910 2010 Forschungsvereinigung Verbrennungskraftmaschinen Stra e 18 Telefon: 069 / 66 03 16 8160528 FrankfurtTelefax: 069 / 66 03 16 73E-Mail: Website: lh l ti i t Ottt II (Ab hlb i ht)Das Urheberrecht an diesem Bericht mit s mtlichen Beilagen verbleibt der FVV bernimmt keine Gew hr f r die Richtigkeit, die Genauigkeit und Vollst ndigkeit der Angaben sowie die Beachtung privater Rechte Dritter. Ohne schriftliche Genehmigung der FVV darf der Bericht weder kopiert noch vervielf ltigt IN Transport 2050 EMPOWERING A SUSTAINABLE MOBILITY FUTURE WITH ZERO EMISSION FUELS FROM renewable ELECTRICITY EUROPE AND GERMANY AN EXPERTISE FOR THE FVV FORSCHUNGSVEREINIGUNG VERBRENNUNGSKRAFTMASCHINEN (RESEARCH ASSOCIATION FOR COMBUSTION ENGINES) Patrick R.

2 Schmidt Werner Zittel Werner Weindorf Tetyana Raksha FINAL REPORT January 2016 R E P O R T Acknowledgement This study was financed by the FVV and supported by members of the FVV Working Group Future Fuels Disclaimer The staff of Ludwig-B lkow-Systemtechnik GmbH prepared this report. The views and conclusions expressed in this document are those of the staff of Ludwig-B lkow-Systemtechnik GmbH. Neither Ludwig-B lkow-Systemtechnik GmbH, nor any of their employees, contractors or subcontractors, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, or process enclosed, or represents that its use would not infringe on privately owned rights. Renewables in Transport 2050 Report i CONTENTS TABLES .. IV FIGURES .. VIII INFOBOXES.

3 XI ACRONYMS AND ABBREVIATIONS .. XII EXECUTIVE SUMMARY .. XIV 1 INTRODUCTION .. 16 Study Background and Approach .. 16 Methodologies applied .. 17 2 LONG-TERM EMISSION REDUCTION TARGETS .. 19 Recent trends worldwide .. 19 USA/California .. 21 Europe .. 22 Germany .. 25 3 renewable POWER SUPPLY .. 26 Technical renewable electricity potentials .. 26 Germany .. 26 EU .. 27 Comparison of renewable electricity with bioenergy .. 39 Spotlight on material 39 Conclusions from renewable electricity potentials .. 42 renewable electricity scenario .. 43 Approach and methodolgy .. 43 German renewable electricity mix and costs .. 44 EU renewable electricity mix and costs .. 47 Import full cost renewable electricity generation ( best-case ) .. 51 4 DEFINITION AND MODELLING OF TWO TRANSPORTATION DEMAND SCENARIOS .. 52 Renewables in Transport 2050 Report ii Passenger and freight transportation demand and scenario selection.

4 52 Germany .. 52 Europe .. 60 Overview over selected transportation demand scenarios .. 62 Modelling of transportation supply .. 63 Methodology and approach .. 63 Parameter setting and fleet modelling .. 64 5 IMPROVEMENTS IN POWER-TO-FUEL PATHWAYS AND VEHICLE POWERTRAINS .. 65 Development of fuel supply pathways .. 65 Hydrogen from natural gas steam reforming (fossil reference) .. 66 Hydrogen from renewable electricity .. 67 CNG and LNG from natural gas (fossil reference) .. 75 Methane (CNG, LNG) from renewable electricity .. 78 Liquid fuels from crude-oil (fossil reference) .. 84 PtL (gasoline, jet fuel, diesel) from renewable electricity .. 86 CO2 95 Electricity for battery-electric vehicles (BEV) and electric trains .. 99 Results fuel supply .. 100 Energy 100 Greenhouse gas emissions .. 103 Specific fuel and greenhouse gas avoidance costs.

5 105 Developments of vehicle/powertrain specific consumption .. 114 Passenger Transport .. 114 Cargo Transport .. 119 Results fuel costs well-to-wheel for passenger vehicles .. 121 6 DEFINITION OF THREE FUEL & POWERTRAIN SCENARIOS .. 128 Renewables in Transport 2050 Report iii PTL scenario .. 129 FVV scenario .. 131 eMob scenario .. 134 138 7 RESULTING ENERGY DEMAND, GREENHOUSE GAS EMISSIONS AND CUMULATED INVESTMENTS .. 141 Scenario fuel demands .. 141 Scenario electricity demands .. 146 Scenario greenhouse gas emissions .. 148 Scenario cumulated investment until 2050 .. 153 Overview of scenario results .. 156 8 CONCLUSIONS & RECOMMENDATIONS .. 157 ANNEX .. 162 A1 Transport DEMAND SCENARIO ASSUMPTIONS .. 163 Germany .. 163 EU .. 167 A2 VEHICLE PARAMETER ASSUMPTIONS .. 171 Passenger .. 171 Freight .. 173 A3 FLEET MODELLING.

6 175 Passenger .. 175 Freight .. 176 A4 CUMULATED INVESTMENTS PTX PLANTS .. 177 Germany .. 177 Europe .. 178 REFERENCES .. 179 Renewables in Transport 2050 Report iv TABLES Table 1: Global warming potential (GWP) of various greenhouse gases [IPCC 2007], [IPCC 2013] .. 17 Table 2: EU indicative targets for greenhouse gas emission reductions (base year 1990) based on different carbon reduction scenarios [EC-CLIMA 2015] .. 22 Table 3: Technical potential for electricity from onshore wind power .. 30 Table 4: Reduction factors for the calculation of the energy potentials of photovoltaics .. 32 Table 5: Efficiency photovoltaic power plant .. 32 Table 6: Technical potential for electricity from roof-mounted photovoltaic power stations .. 33 Table 7: Technical potential for electricity from photovoltaic power plants alongside rail road tracks and motorways.

7 34 Table 8: Cost of electricity from new wind and photovoltaic power plants in Germany (cent/kWh) .. 45 Table 9: Electricity cost of total plant inventory (by technology, mix) in Germany (cent/kWh) .. 45 Table 10: Costs for electricity Transport and distribution .. 46 Table 11: Cost of electricity from new wind and photovoltaic power plants in selected EU states .. 48 Table 12: Electricity cost of total plant inventory (by technology, mix) in selected EU states .. 49 Table 13: Electricity cost of total plant inventory (by technology, mix) in the EU (cent/kWh) .. 50 Table 14: Concentrating solar power station [DLR et al 2012] .. 51 Table 15: Different territorial balances for passenger air Transport 2010 .. 56 Table 16: Key development in the transportation demand scenarios selected for this study .. 62 Table 17: Parameter setting for passenger Transport modes.

8 64 Table 18: Parameter setting for freight Transport modes .. 64 Table 19: Onsite steam methane reforming .. 66 Table 20: CGH2 refuelling station for H2 generation onsite via steam methane reforming (reference) .. 67 Table 21: Characteristics of various electrolyser types .. 67 Table 22: Evolution of electricity consumption and efficiency for low temperature water electrolysis .. 69 Table 23: Specific investment for low temperature water electrolysis .. 73 Renewables in Transport 2050 Report v Table 24: CGH2 refuelling station with onsite hydrogen generation via water electrolysis .. 75 Table 25: Greenhouse gas emissions and energy use for the supply and use of CNG and LNG .. 76 Table 26: Crude oil price and resulting price for gasoline and diesel .. 76 Table 27: CNG refuelling station .. 77 Table 28: Natural gas liquefaction plant .. 77 Table 29: LNG refuelling station.

9 78 Table 30: SOEC energy efficiency, lifetime and investment .. 80 Table 31: Underground gas storage Urdorf in Switzerland .. 80 Table 32: Techno-economics for PtCH4 via low temperature electrolysis and methanation, CO2 capture from air via electrodialysis .. 82 Table 33: Techno-economic data for PtCH4 via low temperature electrolysis and methanation, CO2 capture from air via temperature swing adsorption (TSA) .. 82 Table 34: Techno-economics for PtCH4 via high temperature electrolysis and methanation, CO2 capture from air via electrodialysis .. 83 Table 35: Techno-economic data for PtCH4 via high temperature electrolysis and methanation, CO2 capture from air via temperature swing adsorption (TSA) .. 83 Table 36: CH4 liquefaction .. 84 Table 37: GHG emissions and energy use for the supply and use of gasoline and diesel from crude oil .. 85 Table 38: Crude oil price and resulting price for gasoline and diesel.

10 85 Table 39: Technical and economic data for PtL via the methanol route combined with low temperature electrolysis, CO2 captured from air via 88 Table 40: Technical and economic data for PtL via the methanol route combined with high temperature electrolysis, CO2 captured from air via 90 Table 41: Technical and economic data for PtL via the Fischer-Tropsch route combined with low temperature electrolysis, CO2 captured from air via electrodialysis .. 92 Table 42: Technical and economic data for PtL via the Fisher-Tropsch route combined with high temperature electrolysis, CO2 captured from air via 94 Table 43: Technical and economic data for PtL via the Fisher-Tropsch route combined with high temperature electrolysis, CO2 captured from air via TSA .. 95 Table 44: CO2 extraction from air .. 97 Renewables in Transport 2050 Report vi Table 45: Economic data for the CO2 capture from air via TSA.


Related search queries