Example: bachelor of science

TheEquation of Continuity and theEquation of Motion in ...

The Equation of Continuity and the Equation of Motion in Cartesian,cylindrical, and spherical coordinatesCM3110 Fall 2011 Faith A. MorrisonContinuity Equation, Cartesian coordinates t+(vx x+vy y+vz z)+ ( vx x+ vy y+ vz z)= 0 Continuity Equation, cylindrical coordinates t+1r ( rvr) r+1r ( v ) + ( vz) z= 0 Continuity Equation, spherical coordinates t+1r2 ( r2vr) r+1rsin ( v sin ) +1rsin ( v ) = 0 Equation of Motionfor an incompressible fluid, 3 components in Cartesian coordinates ( vx t+vx vx x+vy vx y+vz vx z)= P x+( xx x+ yx y+ zx z)+ gx ( vy t+vx vy x+vy vy y+vz vy z)= P y+( xy x+ yy y+ zy z)

Note: the r-component of the Navier-Stokes equation in spherical coordinates may be simplified by adding 0 = 2 r∇·v to the component shown above. This term is zero due to the continuity equation (mass conservation). See Bird et. al. References: 1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd edition, Wiley: NY ...

Tags:

  Navier

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of TheEquation of Continuity and theEquation of Motion in ...

1 The Equation of Continuity and the Equation of Motion in Cartesian,cylindrical, and spherical coordinatesCM3110 Fall 2011 Faith A. MorrisonContinuity Equation, Cartesian coordinates t+(vx x+vy y+vz z)+ ( vx x+ vy y+ vz z)= 0 Continuity Equation, cylindrical coordinates t+1r ( rvr) r+1r ( v ) + ( vz) z= 0 Continuity Equation, spherical coordinates t+1r2 ( r2vr) r+1rsin ( v sin ) +1rsin ( v ) = 0 Equation of Motionfor an incompressible fluid, 3 components in Cartesian coordinates ( vx t+vx vx x+vy vx y+vz vx z)= P x+( xx x+ yx y+ zx z)+ gx ( vy t+vx vy x+vy vy y+vz vy z)= P y+( xy x+ yy y+ zy z)

2 + gy ( vz t+vx vz x+vy vz y+vz vz z)= P z+( xz x+ yz y+ zz z)+ gzEquation of Motionfor an incompressible fluid, 3 components in cylindrical coordinates ( vr t+vr vr r+v r vr v2 r+vz vr z)= P r+(1r (r rr) r+1r r r+ zr z)+ gr ( v t+vr v r+v r v +v vrr+vz v z)= 1r P +(1r2 (r2 r ) r+1r + z z+ r r r)+ g ( vz t+vr vz r+v r vz +vz vz z)= P z+(1r (r rz) r+1r z + zz z)+ gzEquation of Motionfor an incompressible fluid, 3 components in spherical coordinates ( vr t+vr vr r+v r vr +v rsin vr v2 +v2 r)= P r+(1r2 (r2 rr) r+1rsin ( rsin ) +1rsin r + r)+ gr ( v t+vr v r+v r v +v rsin v +vrv r v2 cot r)= 1r P +(1r3 (r3 r ) r+1rsin ( sin ) +1rsin + r r r cot r)+ g ( v t+vr v r+v r v +v rsin v +vrv r+v v cot r)= 1rsin P +(1r3 (r3 r ) r+1rsin ( sin ) +1rsin + r r r+ cot r)

3 + g Equation of Motionfor incompressible, Newtonian fluid ( navier -Stokes equation) 3 components in Cartesiancoordinates ( vx t+vx vx x+vy vx y+vz vx z)= P x+ ( 2vx x2+ 2vx y2+ 2vx z2)+ gx ( vy t+vx vy x+vy vy y+vz vy z)= P y+ ( 2vy x2+ 2vy y2+ 2vy z2)+ gy ( vz t+vx vz x+vy vz y+vz vz z)= P z+ ( 2vz x2+ 2vz y2+ 2vz z2)+ gzEquation of Motionfor incompressible, Newtonian fluid ( navier -Stokes equation), 3 components in cylin-drical coordinates ( vr t+vr vr r+v r vr v2 r+vz vr z)= P r+ ( r(1r (rvr) r)+1r2 2vr 2 2r2 v + 2vr z2)+ gr ( v t+vr v r+v r v +vrv r+vz v z)= 1r P + ( r(1r (rv ) r)+1r2 2v 2+2r2 vr + 2v z2)+ g ( vz t+vr vz r+v r vz +vz vz z)= P z+ (1r r(r vz r)+1r2 2vz 2+ 2vz z2)+ gzEquation of Motionfor incompressible, Newtonian fluid ( navier -Stokes equation), 3 components in sphericalcoordinates ( vr t+vr vr r+v r vr +v rsin vr v2 +v2 r)= P r+ ( r(1r2 r(r2vr))+1r2sin (sin vr )+1r2sin2 2vr 2 2r2sin (v sin ) 2r2sin v )+ gr ( v t+vr v r+v r v +v rsin v +vrv r v2 cot r)= 1r P + (1r2 r(r2 v r))

4 +1r2 (1sin (v sin ))+1r2sin2 2v 2+2r2 vr 2 cot r2sin v )+ g ( v t+vr v r+v r v +v rsin v +vrv r+v v cot r)= 1rsin P + (1r2 r(r2 v r)+1r2 (1sin (v sin ))+1r2sin2 2v 2+2r2sin vr +2 cot r2sin v )+ g Note: ther-component of the navier -Stokes equation in spherical coordinates may be simplified by adding 0 =2r vto the component shown above. This term is zero due to the Continuity equation (mass conservation). SeeBird et. :1. R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena, 2ndedition, Wiley: NY, R.

5 B. Bird, R. C. Armstrong, and O. Hassager,Dynamics of Polymeric Fluids: Volume 1 Fluid Mechanics,Wiley: NY, 1987.


Related search queries