Example: confidence

Understanding Thermal Dissipation and Design of a Heatsink

-JAJADTT =P-JMAXADMAXJATTP= ApplicationReportSLVA462 printed-circuitboard(PCB) running,it consumeselectricalenergythatis typicallygeneratedbyswitchingdeviceslike MOSFETs,ICs, properheatsinkfora (TJMAX) is oneofthekeyfactorsthatlimitthepowerdissi pationcapabilityofa definedbythemanufacturerandusuallydepend sonthereliabilityofthedieusedin shownin Equation2:(1)Where: JA= thermalresistanceTJ= junctiontemperatureTA= ambienttemperaturePD= powerdissipationTodiscoverthemaximumpowe rthatthedevicecandissipate,rearrangeEqua tion2 to:(2)Withthehelpof JAandTJMAX, whicharementionedin theTPS54325datasheet(SLVS932), ,in thedatasheet, JAis C/WandTJMAXis givenas125 C and85 C,onecanarriveatthevaluesmentionedin , linear,soif thedissipationis 2250mWfora 100 C rise(from25 C to125 C),foreachonedegreeincreasein ambienttemperature,thepowerdissipatio

www.ti.com In most cases, the TJ, PD, and θJC are given in the device manufacturer's data sheet; θCS and TA are used as defined parameters. The ambient air temperature TA for cooling the devices depends on the operating environment in which the component is expected to be used. Typically, it ranges from 35°C to 45°C, if the

Tags:

  Design, Thermal, Understanding, Dissipation, Understanding thermal dissipation and design, Given

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Understanding Thermal Dissipation and Design of a Heatsink

1 -JAJADTT =P-JMAXADMAXJATTP= ApplicationReportSLVA462 printed-circuitboard(PCB) running,it consumeselectricalenergythatis typicallygeneratedbyswitchingdeviceslike MOSFETs,ICs, properheatsinkfora (TJMAX) is oneofthekeyfactorsthatlimitthepowerdissi pationcapabilityofa definedbythemanufacturerandusuallydepend sonthereliabilityofthedieusedin shownin Equation2:(1)Where: JA= thermalresistanceTJ= junctiontemperatureTA= ambienttemperaturePD= powerdissipationTodiscoverthemaximumpowe rthatthedevicecandissipate,rearrangeEqua tion2 to:(2)Withthehelpof JAandTJMAX, whicharementionedin theTPS54325datasheet(SLVS932), ,in thedatasheet, JAis C/WandTJMAXis givenas125 C and85 C,onecanarriveatthevaluesmentionedin , linear,soif thedissipationis 2250mWfora 100 C rise(from25 C to125 C)

2 ,foreachonedegreeincreasein ambienttemperature,thepowerdissipationra tinghastobedecreased2250/100= sometimesusedforcalculation, specificsynchronousbuckconverterapplicat ionwheretheinputis 5 V andoutputis at1 A, notthepowerdissipatedin a datasheetfortheapplication,anassumptiono ftheefficiencyis tobeconsidered(90%) ,theinputpowerin thiscaseis ,andthepowerdissipationin theconverteris dissipatedin theinductor,whichis ,theinductorpoweris:Pinductor= Iout2 DCR= 12 100 10-3= now250mW- 100mW= 150mW,andthejunctiontemperatureriseabove ambientis calculatedusingtheformula.

3 1 SLVA462 May2011 UnderstandingThermalDissipationandDesign ofa HeatsinkSubmitDocumentationFeedbackCopyr ight 2011,TexasInstrumentsIncorporated-JAJCCS SAJAJCCSSAD = + + TT= + + P---JASAJCCSDTT = ( JA PD) + TA= TJTJ= 75 + TA= C aboveambient(75 C/Wis thethermalresistancetakenasa example)Consideranotherexampleofcalculat ingthedissipationofa , theunloadedpowerdissipationinherenttothe deviceandtheloadpowerdissipation,whichis a (total)= PD(unloaded)+ PD(loaded)Powerdissipationin anunloadedlogicdevicecanbecalculatedusin gthefollowingequations:PD(unloaded)= VCC ICIC= ICC+ Iinput+ IdynamicWhere:VCC= supplyvoltageICC= quiescentcurrentIinput= totalcurrentwheninputsarehighIdynamic= powersupplycurrentperunitfrequencyIinput = II NI DIandIdynamic= Cpd VccWhere:II= supplycurrentfora highinputNI= numberofinputsonhighlevelDI= dutycycleofinputsathighlevelCpd= powerdissipationcapacitanceTheloadingofa , a loadedlogicdevicecanbecalculatedusingthe followingequations:PD(loaded)= VOH NO f CLWhere.

4 VOH= logichighoutputvoltageNO= numberofoutputsloadedwithCLf = outputswitchingfrequencyCL= loadcapacitanceperoutputHeatsinkDesign JAis actuallymadeupofatleasttwoseparatetherma lresistancesin thethermalresistanceinsidethedevicepacka ge,betweenthejunctionanditsoutsidecase,c alled JC. Theotheristheresistancebetweenthecaseand theambient, CA. Because JCis underthecontrolofthemanufacturer,nothing canbedonewithit. It is wheretheheatsinkin CAis nowsplitinto CSand SA, where Sis thethermalresistanceoftheinterfacecompou ndused,and SAis now:(3)Rearrangingthis:(4)2 UnderstandingThermalDissipationandDesign ofa HeatsinkSLVA462 May2011 SubmitDocumentationFeedbackCopyright 2011, ,theTJ, PD, and JCaregivenin thedevicemanufacturer'sdatasheet.

5 Whichthecomponentis ,it rangesfrom35 C to45 C,if theexternalairflowthrougha fanis usedandfrom50 C to60 C,if thecomponentis CSdependsmainlyontheinterfacematerialand itsthicknessandalsoonthesurfacefinish,fl atness,appliedmountingpressure, , SAbecomestherequiredmaximumthermalresist anceofa ,thethermalresistancevalueofa chosenheatsinkfortheapplicationhastobeeq ualtoorlessthantheprevious selectinga typicallymeasuredin linearfeetperminute(LFM)orCFM(cubicfeetp erminute).LFMis ameasureofvelocity,whereasCFMis a ,fanmanufacturersuseCFMbecausefansarerat edaccordingtothequantityofairit (speed)is moremeaningfulforheatremovalattheboardle vel,whichis ,airflowis a veryimportantin naturalconvection,asit canberesponsibleforapproximately25% facinga hottersurfacenearby,it is inducedbymechanicalmeans,usuallya heatsinkfora givenflowconditioncanbeobtainedbyusingth efollowingequation:Volume( Heatsink )= volumetricresistance(Cm3 C/W)/thermalresistance SA( C/W)Anapproximaterangeofvolumetricresist anceis givenin thefollowingtable.

6 AvailableAirflowVolumetricResistance(LFM )(Cm3 C/W)NC500 800200150- 25050080- 150100050- 80 Thenextimportantcriterionfortheperforman ceofa heatsinkis is linearlyproportionaltotheperformanceofth eheatsinkin ,anincreasein thewidthofa heatsinkbya factoroftwo,three,orfourincreasetheheatd issipationcapabilitybya factoroftwo,three, ,thesquarerootofthefinlengthusedis approximatelyproportionaltotheperformanc eoftheheatsinkin thelengthoftheheatsinkbya factoroftwo,three,orfouronlyincreasesthe heatdissipationcapabilitybya , , theboardhassufficientspace,it is alwaysbeneficialtoincreasethewidthofa onlythebeginningofaniterativeprocessbefo rethecorrectandtheactualheatsinkdesignis May2011 UnderstandingThermalDissipationandDesign ofa HeatsinkSubmitDocumentationFeedbackCopyr ight 2011,TexasInstrumentsIncorporatedIMPORTA NTNOTICET exasInstrumentsIncorporatedanditssubsidi aries(TI)

7 Reservetherighttomakecorrections,modific ations,enhancements,improvements, s accordancewithTI s ,testingofallparametersofeachproductis , ,eitherexpressorimplied,is grantedunderanyTIpatentright,copyright,m askworkright,orotherTIintellectualproper tyrightrelatingtoanycombination,machine, orprocessin licensefroma thirdpartyunderthepatentsorotherintellec tualpropertyofthethirdparty,ora TIdatabooksordatasheetsis permissibleonlyif reproductionis withoutalterationandis accompaniedbyallassociatedwarranties,con ditions,limitations, safety-criticalapplications(suchaslifesu pport)wherea failureoftheTIproductwouldreasonablybeex pectedtocauseseverepersonalinjuryordeath , thesafetyandregulatoryramificationsofthe irapplications,andacknowledgeandagreetha ttheyaresolelyresponsibleforalllegal,reg ulatoryandsafety-relatedrequirementsconc erningtheirproductsandanyuseofTIproducts in suchsafety-criticalapplications, , military/aerospaceapplicationsorenvironm entsunlesstheTIproductsarespecificallyde signatedbyTIasmilitary-gradeor"enhancedp lastic.

8 " solelyattheBuyer's risk,andthattheyaresolelyresponsibleforc ompliancewithalllegalandregulatoryrequir ementsin ,if theyuseanynon-designatedproductsin automotiveapplications, , :TexasInstruments,PostOfficeBox655303,Da llas,Texas75265 Copyright 2011,TexasInstrumentsIncorporat


Related search queries