Example: stock market

Linear Matrix Inequalities in System and Control Theory

LinearMatrixInequalitiesinSystemandContr olTheorySIAMS tudiesinAppliedMathematicsThisseriesofmo nographsfocusesonmathematicsanditsapplic ationstoproblemsofcurrentconcerntoindust ry,government, ,numericalanalysts,statisticians,enginee rs, eva, , ,LaurentElGhaoui,EricFeron,andVenkataram ananBalakrishnanStephenBoyd,LaurentElGha oui,EricFeron,andVenkataramananBalakrish nanLinearMatrixInequalitiesinSystemandCo ntrolTheorySocietyforIndustrialandApplie dMathematics PhiladelphiaCopyrightc ,stored, ,writetotheSocietyforIndustrialandApplie dMathematics,3600 UniversityCityScienceCenter,Philadelphia , [etal.]. (SIAM studiesinappliedmathematics; ) , : . : analyticsolutions totheseproblems, (by, ,theellipsoidalgorithmofShor,Nemirovskii ,andYudin),andsoaretractable, , , , :Wepresentnospecificexamplesornu-merical results, ,wehopethatthisbookwilllaterbeconsidered asthefirstbookonthetopic, sbookMathematicalControlThe-ory[Son90] [Kai80]byKailath,NonlinearSystemsAnalysi s[Vid92]byVidyasagar,OptimalControl:Line arQuadraticMethods[AM90]byAndersonandMoo re,andConvexAnalysisandMinimizationAlgor ithmsI[HUL93]byHiriart UrrutyandLemar [NN94] , , ,realizationtheory,andstate-feedbacksynt hesismethods, , , , , , , , , , , , , , (underF49620-92-J-0013),NSF(underECS-922 2391),andARPA(underF49620-93-1-0085).

SIAM Studies in Applied Mathematics This series of monographs focuses on mathematics and its applications to problems of current concern to industry, government, and society. These monographs will be of interest to applied mathematicians, numerical analysts, statisticians, engineers, and scientists who have an active need to learn useful ...

Tags:

  Engineer, Scientist, Mathematics, Applied, Applied mathematics, And scientists

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Linear Matrix Inequalities in System and Control Theory

1 LinearMatrixInequalitiesinSystemandContr olTheorySIAMS tudiesinAppliedMathematicsThisseriesofmo nographsfocusesonmathematicsanditsapplic ationstoproblemsofcurrentconcerntoindust ry,government, ,numericalanalysts,statisticians,enginee rs, eva, , ,LaurentElGhaoui,EricFeron,andVenkataram ananBalakrishnanStephenBoyd,LaurentElGha oui,EricFeron,andVenkataramananBalakrish nanLinearMatrixInequalitiesinSystemandCo ntrolTheorySocietyforIndustrialandApplie dMathematics PhiladelphiaCopyrightc ,stored, ,writetotheSocietyforIndustrialandApplie dMathematics,3600 UniversityCityScienceCenter,Philadelphia , [etal.]. (SIAM studiesinappliedmathematics; ) , : . : analyticsolutions totheseproblems, (by, ,theellipsoidalgorithmofShor,Nemirovskii ,andYudin),andsoaretractable, , , , :Wepresentnospecificexamplesornu-merical results, ,wehopethatthisbookwilllaterbeconsidered asthefirstbookonthetopic, sbookMathematicalControlThe-ory[Son90] [Kai80]byKailath,NonlinearSystemsAnalysi s[Vid92]byVidyasagar,OptimalControl:Line arQuadraticMethods[AM90]byAndersonandMoo re,andConvexAnalysisandMinimizationAlgor ithmsI[HUL93]byHiriart UrrutyandLemar [NN94] , , ,realizationtheory,andstate-feedbacksynt hesismethods, , , , , , , , , , , , , , (underF49620-92-J-0013),NSF(underECS-922 2391),andARPA(underF49620-93-1-0085).

2 El egationG en eralepourl (underNSFDCDR-8803012).Thisbookwastypese tbytheauthorsusingLATEX, ,CaliforniaLaurentElGhaouiParis,FranceEr icFeronCambridge,MassachusettsVenkataram ananBalakrishnanCollegePark, (LMIs).Sincetheseresult-ingoptimizationp roblemscanbesolvednumericallyveryefficie ntlyusingrecentlydevelopedinterior-point methods,ourreductionconstitutesasolution totheoriginalproblem,certainlyinapractic alsense, , : matrixscalingproblems, ,minimizingconditionnumberbydiagonalscal ing constructionofquadraticLyapunovfunctions forstabilityandperformanceanal-ysisoflin eardifferentialinclusions jointsynthesisofstate-feedbackandquadrat icLyapunovfunctionsforlineardifferential inclusions synthesisofstate-feedbackandquadraticLya punovfunctionsforstochasticanddelaysyste ms synthesisofLur e-typeLyapunovfunctionsfornonlinearsyste ms optimizationoveranaffinefamilyoftransfer matrices,includingsynthesisofmultipliers foranalysisoflinearsystemswithunknownpar ameters positiveorthantstabilityandstate-feedbac ksynthesis optimalsystemrealization interpolationproblems,includingscaling multicriterionLQG/LQR inverseproblemofoptimalcontrolInsomecase s,wearedescribingknown,publishedresults.

3 Inothers, ,however, ,thereaderwillseethatLya-punov , smethods,whicharetraditionally12 Chapter1 Introductionappliedtotheanalysisofsystem stability,canjustaswellbeusedtofindbound sonsystemperformance,providedwedonotinsi stonan analyticsolution . , (t)=Ax(t)( )isstable( ,alltrajectoriesconvergetozero)ifandonly ifthereexistsapositive-definitematrixPsu chthatATP+PA<0.( )TherequirementP>0,ATP+PA<0iswhatwenowcallaLyapunovinequalityonP, ,wecanpickanyQ=QT>0andthensolvethelinearequationATP+PA= QforthematrixP,whichisguaranteedtobeposi tive-definiteifthesystem( ) ,thefirstLMIusedtoanalyzestabilityofadyn amicalsystemwastheLyapunovinequality( ),whichcanbesolvedanalytically(bysolving asetoflinearequations).Thenextmajormiles toneoccursinthe1940 e,Postnikov,andothersintheSovietUnionapp liedLyapunov smethodstosomespecificpracticalproblemsi ncontrolengineering,especially, , byhand (for,needlesstosay,smallsystems).

4 Neverthelesstheywerejustifiablyexcitedby theideathatLyapunov stheorycouldbeappliedtoimportant(anddiff icult) e s1951book[Lur57]wefind:Thisbookrepresent sthefirstattempttodemonstratethattheidea sex-pressed60yearsagobyLyapunov,whicheve ncomparativelyrecentlyap-pearedtoberemot efrompracticalapplication, ,Lur eandotherswerethefirsttoapplyLyapunov , (second,thirdorder) s,whenYakubovich,Popov,Kalman,andotherre searcherssucceededinreducingthesolutiono ftheLMIsthataroseintheproblemofLur etosimplegraphicalcriteria,usingwhatweno wcallthepositive-real(PR)lemma(see ).ThisresultedinthecelebratedPopovcriter ion,circlecriterion,Tsypkincriterion, , (LMIsincontroltheory), s,especiallybyYakubovich[Yak62,Yak64,Yak 67].Thisisclearsimplyfromthetitlesofsome ofhispapersfrom1962 5, ,Thesolutionofcertainmatrixinequalitiesi nautomaticcontroltheory(1962),andThemeth odofmatrixinequalitiesinthestabilitytheo ryofnonlinearcontrolsystems(1965;English translation1967).

5 ThePRlemmaandextensionswereintensivelyst udiedinthelatterhalfofthe1960s,andwerefo undtoberelatedtotheideasofpassivity,thes mall-gaincriteriaintroducedbyZamesandSan dberg, ,itwasknownthattheLMIappearinginthePRlem macouldbesolvednotonlybygraphicalmeans,b utalsobysolvingacertainalgebraicRiccatie quation(ARE).Ina1971paper[Wil71b]onquadr aticoptimalcontrol, [ATP+PA+QPB+CTBTP+CR] 0,( )andpointsoutthatitcanbesolvedbystudying thesymmetricsolutionsoftheAREATP+PA (PB+CT)R 1(BTP+C)+Q=0,whichinturncanbefoundbyanei gendecompositionofarelatedHamiltonianmat rix.(See )Thisconnectionhadbeenobservedearlierint heSovietUnion,wheretheAREwascalledtheLur eresolvingequation(see[Yak88]).Soby1971, researchersknewseveralmethodsforsolvings pecialtypesofLMIs:direct(forsmallsystems ),graphicalmethods, ,thesemethodsareall closed-form or analytic solutionsthatcanbeusedtosolvespecialform sofLMIs.(Mostcontrolresearchersandengine ersconsidertheRiccatiequationtohavean analytic solution,sincethestandardalgorithmsthats olveitareverypredictableintermsoftheeffo rtrequired, )InWillems 1971 , ( ), ,Willems suggestionthatLMIsmighthavesomeadvantage sincomputationalalgorithms(ascomparedtot hecorrespondingRiccatiequations) (inourview) ,ithassomeimportantconsequences,themosti mportantofwhichisthatwecanreliablysolvem anyLMIsforwhichno analyticsolution hasbeenfound(orislikelytobefound).

6 [PS82]wereperhapsthefirstresearcherstoma kethispoint, e(extendedtothecaseofmul-tiplenonlineari ties)toaconvexoptimizationprobleminvolvi ngLMIs, (Thisproblemhadbeenstudiedbefore,butthe solutions involvedanarbitraryscalingmatrix.)Pyatni tskiiandSkorodinskiiwerethefirst,asfaras weknow,toformulatethesearchforaLyapunovf unctionasaconvexoptimizationproblem, ,HorisbergerandBe-langer[HB76] ,theideaofhavingacomputersearchforaLya-p unovfunctionwasnotnew itappears,forexample,ina1965paperbySchul tzetal.[SSHJ65]. , ,liketheellip-soidmethod,butincontrastto theellipsoidmethod, sworkspurredanenormousamountofworkinthea reaofinterior-pointmethodsforlinearprogr amming(includingtherediscoveryofefficien tmethodsthatweredevelopedinthe1960sbutig nored).Essentiallyallofthisresearchactiv itycon-centratedonalgorithmsforlinearand (convex) ,NesterovandNemirovskiidevelopedinterior -pointmethodsthatapplydirectlytocon-vexp roblemsinvolvingLMIs,andinparticular, ,severalinterior-pointalgorithmsforLMIpr oblemshavebeenimplementedandtestedonspec ificfamiliesofLMIsthatariseincontroltheo ry, : 1890:FirstLMIappears;analyticsolutionoft heLyapunovLMIviaLyapunovequation.

7 1940 s:ApplicationofLyapunov byhand . Early1960 s:PRlemmagivesgraphicaltechniquesforsolv inganotherfamilyofLMIs. Late1960 s:ObservationthatthesamefamilyofLMIscanb esolvedbysolvinganARE. Early1980 s:RecognitionthatmanyLMIscanbesolvedbyco mputerviaconvexprogramming. Late1980 , (general) , , (thatinmostcasesaretrivialtofigureout).W eareveryinformal,perhapsevencavalier, details ,itmaybeCopyrightc , ,thereaderwhowishestoimplementanalgorith mthatsolvesaproblemconsideredinthisbooks houldbepreparedtomakeafewmodificationsor additionstoourdescriptionofthe solution .Inasimilarway, ,foreachreducedproblemwecouldstate,proba blysimplify, ,wecanconsidervariousdualoptimizationpro blems,lowerboundsfortheproblem, , (whichalmostalwaysariseinthisform)andals owhenweconsiderstochasticsystems(toavoid thetechnicaldetailsofstochasticdifferent ialequations).Thelistofproblemsthatwecon siderismeantonlytoberepresentative, , ,wedescribemanyvariationsonproblems( ,computingboundsonmarginsanddecayrates); inlaterchapters,wedescribefewerandfewerv ariations, ,inwhichwehideproofs,precisestatements,e laborations, ,despiteitssize(over500entries).

8 , , x=Axisourshortformfordx/dt=Ax(t).HereAis aconstantmatrix;whenweencountertime-vary ingcoefficients,wewillexplicitlyshowthet imedependence,asin x=A(t) ,wedropthedummyvariablefromdefiniteinteg rals,writingforexample, T0uTydtfor T0u(t)Ty(t) ,weadopttheconventionthattheoperatorsTr( traceofamatrix)andE(expectedvalue)havelo werprecedencethanmultiplication,transpos e, ,TrATBmeansTr(ATB). ,byBoydandElGhaoui[BE93], (thatpresumablywouldhavebeensubmittedfor publicationasapaper) ,andlaterBalakrishnan,startedaddingmater ial,andsoonitwasclearthatwewerewritingab ook, (LMI)hastheformF(x) =F0+m i=1xiFi>0,( )wherex RmisthevariableandthesymmetricmatricesFi =FTi Rn n,i=0,..,m, ( )meansthatF(x)ispositive-definite, ,uTF(x)u>0forallnonzerou ,theLMI( )isequivalenttoasetofnpolynomialinequali tiesinx, ,theleadingprincipalminorsofF(x) ,whichhavetheformF(x) 0.( )ThestrictLMI( )andthenonstrictLMI( )arecloselyrelated,butaprecisestatemento ftherelationisabitinvolved,sowedeferitto ( )isaconvexconstraintonx, ,theset{x|F(x)>0} ( )mayseemtohaveaspecializedform, ,linearinequalities,(convex)quadraticine qualities,matrixnorminequalities,andcons traintsthatariseincontroltheory,suchasLy apunovandconvexquadraticmatrixinequaliti es, (1)(x)>0.

9 ,F(p)(x)>0canbeexpressedasthesingleLMIdi ag(F(1)(x),..,F(p)(x))> , , theLMIF(1)(x)>0,..,F(p)(x)>0 willmean theLMIdiag(F(1)(x),..,F(p)(x))>0 .WhenthematricesFiarediagonal,theLMIF(x) > (convex) :theLMI[Q(x)S(x)S(x)TR(x)]>0,( )78 Chapter2 SomeStandardProblemsInvolvingLMIswhereQ( x)=Q(x)T,R(x)=R(x)T,andS(x)dependaffinel yonx,isequivalenttoR(x)>0,Q(x) S(x)R(x) 1S(x)T>0.( )Inotherwords,thesetofnonlinearinequalit ies( )canberepresentedastheLMI( ).Asanexample,the(maximumsingularvalue)m atrixnormconstraint Z(x) <1,whereZ(x) Rp qanddependsaffinelyonx,isrepresentedastheLMI[IZ(x)Z(x)TI]>0(since Z <1isequivalenttoI ZZT>0).Notethatthecaseq= (x)TP(x) 1c(x)<1,P(x)>0,wherec(x) RnandP(x)=P(x)T Rn ndependaffinelyonx,isexpressedastheLMI[P (x)c(x)c(x)T1]> ,theconstraintTrS(x)TP(x) 1S(x)<1,P(x)>0,whereP(x)=P(x)T Rn nandS(x) Rn pdependaffinelyonx,ishandledbyintroducin ganew(slack)matrixvariableX=XT Rp p,andtheLMI(inxandX):TrX<1,[XS(x)TS(x)P(x)]> ; , ,theLya-punovinequalityATP+PA<0,( )whereA Rn nisgivenandP= (x)>0, theLMIATP+PA<0inP meansthatthematrixPisavariable.

10 (Ofcourse,theLyapunovinequality( )isreadilyputintheform( ), ,..,Pmbeabasisforsymmetricn nmatrices(m=n(n+1)/2).ThentakeF0=0andFi= ATPi PiA.)LeavingLMIsinacondensedformsuchas( ),inadditiontosavingnotation,mayleadtomo reefficientcomputation;see ,considerthequadraticmatrixinequalityATP +PA+PBR 1 BTP+Q<0,( )Copyrightc ,B,Q=QT,R=RT>0aregivenmatricesofappropriatesizes,andP = [ ATP PA QPBBTPR]> ( )isconvexinP, , >0,ATP+PA<0,TrP=1,( )whereP Rk ( )intheformF(x)> ,..,Pmbeabasisforsymmetrick kmatriceswithtracezero(m=(k(k+1)/2) 1)andletP0beasymmetrick kmatrixwithTrP0= (P0, ATP0 P0A)andFi=diag(Pi, ATPi PiA)fori=1,.., ( )asLMIs, (x)>0,thecorrespondingLMIP roblem(LMIP)istofindxfeassuchthatF(xfeas )>0ordeterminethattheLMIisinfeasible.(By duality,thismeans:FindanonzeroG 0suchthatTrGFi=0fori=1,..,mandTrGF0 0;seetheNotesandReferences.)Ofcourse, solvingtheLMIF(x)>0 ,considerthe simultaneousLyapunovstabilityprob-lem (whichwewillseein ):WearegivenAi Rn n,i=1.


Related search queries