Example: biology

洞道中超高壓地下電力系統之設計 - relay.org.tw

12 25 Design of Extra High Voltage Underground Power Systems in Tunnel Keywords Ampacity heat energy loss energy transfer ability induction voltage shielding underground power systems in tunnel Abstract This thesis explores the various lay-out schemes for the extra-high-voltage underground cables in tunnel. Since massive heat will be generated by energy losses during power transmission of power cables, it is crucial to determine the ampacity of continuous current rating of power cables for safe system operation.

14 洞道中超高壓地下電力系統之設計 電驛協會會刊25 期 造。超高壓電纜地下電纜洞道敷設種類,

Tags:

  Early

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of 洞道中超高壓地下電力系統之設計 - relay.org.tw

1 12 25 Design of Extra High Voltage Underground Power Systems in Tunnel Keywords Ampacity heat energy loss energy transfer ability induction voltage shielding underground power systems in tunnel Abstract This thesis explores the various lay-out schemes for the extra-high-voltage underground cables in tunnel. Since massive heat will be generated by energy losses during power transmission of power cables, it is crucial to determine the ampacity of continuous current rating of power cables for safe system operation.

2 In view of this, this thesis aims to develop an application program for underground power systems with different topological configurations which can calculate the heat energy loss, energy transfer ability of the power cables, and the induction voltage of the shielding with distance limit. The developed application program can be a valuable reference for power engineers in planning power system in underground tunnel to determine the suitable types and the spaces required for the tunnel. To verify the practicability of the application program, several real planning cases of Taipower Company are thoroughly examined. Results obtained from the case studies show that the proposed program can provide correct analysis results and effectively assist the power engineers in designing underground power systems in I.

3 13 25 345kV [1] [2] [3~4] [5] [6] 345kV 161kV IEC[7~11] JCS[12] (Microsoft Windows NT) Visual Basic Microsoft Office [13~19] II.

4 1. Transmission line Overhead Underground 345kV [20] Oil-filled cable, XLPE cable XLPE 345kV XLPE 161kV XLPE XLPE [18 19 21] A. 90 C B. C. D. E. F. G. H. 14 25 [6] [6] [6] [22~23] A.

5 R 161kV 200mm2 R=2m 345kV 2500mm2 R=3m B. C. D. 2. 15 25 161kV 345kV [18] XLPE XLPE [26~27] PE ( ) 161kV OF 4000 MCM ( ) 4000 MCM[18] 161kV PE 200mm ~600mm ( ) 80 ~ XLPE XLPE 23 XLPE ( ) ( ) ~ 22 XLPE 600mm2 80 XLPE XLPE 23 XLPE ( ) ( ) 34mm~ 161kV PE 800mm ~2000mm ( )22 XLPE 800mm2 [19][26] 161kV 345kV XLPE [19 21 26] A.

6 Conductor 200 250 325 400 500 600 800 1000 1200 1400 1600 1800 2000 2500 3000mm2 200~600 mm2 800 mm2 B. Conductor shielding XLPE C. Insulation 90 C 105 C 230 C 345kV XLPE 2500mm2-ABB[1][27] D. Insulation shielding XLPE E. Water-block swelling layer 5 XLPE 80 PE 16 25 F. Concentric shielding copper wire 8 50kA 80 G.

7 Binder tape H. Water impervious layer PVC I. Jacket XLPE [2~4][24~26] A. CV Cable B. CSZV Cable C. CAZV Cable D. CLZV Cable CV CLZV CAZV CV CV CSZV CV III. 1. [28] A. 345kV XLPE 2500mm2 2187 MVA (3660A) XLPE 2000mm2 538 MVA (1930A) 4000 MCM 269 MVA (965A) XLPE 500 MVA 4 345kV XLPE 2500mm2 2000 MVA XLPE 60 MVA 6 161kV XLPE 2000mm2 360 MVA 2.

8 161kV 345kV XLPE IEC 60287 [7~11][29] JCS 168 [12 17 30] IEC JCS IEC 3. 161kV 345kV XLPE 17 25 IEC 60287 [29~30] A. C XLPE 90 C 105 C 230 C B. e Tb C 40 C C. R( /m) '1 SPR R Y Y (2-1) 0 20' 1 20RR (2-2) (2-3) ssKRfx7210'8 xs (2-4) 3 (Proximity effect factor) Yp ] )( [)( ppccpppxxsdsdxxY (2-5) ppKRfx7210'8 xp (2-6) D. Wd (W/m) tan20 CEWd (2-7) 2f (2-8) 910)(18 cidDnC F/m (2-9) 4.

9 161kV 345kV XLPE 1 SCWW (2-10) A. 1 1 1 1'"F (2-11) 1 1 Cross bonding 1 = 0 121'1 XsSRRR (2-12) ]1012)()1(["12412101 ssstgRR (2-13) ) ()( SSSSDDtg (2-14) S 71104 (2-15) 2220)2)(1(3sdmm (2-16) ) ( )2)( ( msdm (2-17) 02 (2-18) 710 SRm (2-19) 225201)(10)]20(1[40 SSSSSSdnPTR (2-20) XLPE 2 = 0 B. F )1)(1(4)(422222 NMNMNMF (2-21) xRNMS (2-22) 722 10 ( )sXnd (2-23) 5. 161kV 345kV XLPE 18 25 A. (1) T1( C m/W) ]21[211cTdtnT (2-24) (2) T2( C m/W) 222(1 )2 SStTnD (2-25) XLPE T2=0 (3) T3( C m/W) 332(1 )2'patTnD (2-26) (4) T4( C m/W) 4/14)(1 SehDT (2-27) geZhED (2-28) B.

10 C d S 1/ 41[]1dSnASnK (2-29) )]1()1([)())(1(2131214/521 TTnThDSeSd (2-30) 12 1 3 1 212[ (1 ) (1 )]1eADhTK T Tn (2-31) ]1)2111[(2122121 TnTWdd (2-32) Tc21T1 T121 WcWdWs T23T T4T4'T"4"'T4T4=+T4T+4'""' Tb Rth Td ( ) XLPE 6. 161kV 345kV XLPE )(])1([])1([)21(4321221212 TTnWRInTWRITWRIddd (2-33) I 2/143212114321]))(1()1()](21[[TTnRTnRRTT TTnTWId (2-34) 161kV 345kV XLPE 1C d SW W W W W/m Wt=W1 2 3 2=W1 12 161kV XLPE W/cm 345kV XLPE 60 W/cm 2CW Ic R (2-35) 1 SCWW (2-36) 20tandW CE (2-7) 19 25 7.


Related search queries