Example: quiz answers

The Fourier Transform (What you need to know)

FOURIERBOOKLET-1 SchoolofPhysicsTHEUNIVERSITYOFEDINBURGHT heFourierTransform(Whatyouneedtoknow)Mat hematicalBackgroundfor:SeniorHonoursMode rn OpticsSeniorHonoursDigitalImageAnalysisS eniorHonoursOpticalLaboratoryProjectsMSc TheoryofImageProcessingSession:2007-2008 .. DimensionalFourierTransform.. niteComb..125 ConvolutionofTwo .. DimensionalConvolution..146 CorrelationofTwo .. ()function..28 SchoolofPhysicsFourierTransformRevised:1 0 September2007-2 FOURIERBOOKLET1 IntroductionFourierTransformtheoryis essentialtomany areasofphysicsincludingacousticsandsigna lprocessing,opticsandimageprocessing,sol idstatephysics,scatteringtheory, andthemoregenerally, inthesolutionofdifferentialequationsinap plicationsasdiverseasweathermodel-ingto quantum (sineandcosine),ora shiftofspacefromrealspacetore-ciprocalsp ace.

5Strictly speaking Parseval’s Theorem applies to the case of Fourier series, and the equivalent theorem for Fourier transforms is correctly, but less commonly, known as Rayleigh’s theorem 6Unless otherwise specied all integral limits will be assumed to be from ¥ !¥ School of Physics Fourier Transform Revised: 10 September 2007

Tags:

  Series, Fourier, Fourier series

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of The Fourier Transform (What you need to know)

1 FOURIERBOOKLET-1 SchoolofPhysicsTHEUNIVERSITYOFEDINBURGHT heFourierTransform(Whatyouneedtoknow)Mat hematicalBackgroundfor:SeniorHonoursMode rn OpticsSeniorHonoursDigitalImageAnalysisS eniorHonoursOpticalLaboratoryProjectsMSc TheoryofImageProcessingSession:2007-2008 .. DimensionalFourierTransform.. niteComb..125 ConvolutionofTwo .. DimensionalConvolution..146 CorrelationofTwo .. ()function..28 SchoolofPhysicsFourierTransformRevised:1 0 September2007-2 FOURIERBOOKLET1 IntroductionFourierTransformtheoryis essentialtomany areasofphysicsincludingacousticsandsigna lprocessing,opticsandimageprocessing,sol idstatephysics,scatteringtheory, andthemoregenerally, inthesolutionofdifferentialequationsinap plicationsasdiverseasweathermodel-ingto quantum (sineandcosine),ora shiftofspacefromrealspacetore-ciprocalsp ace.

2 Actuallythesetwo conceptsaremathematicallyidenticalalthou ghthey tocovertheFourierTheoryrequiredprimarily forthe JuniorHonourscourseOPTICS. SeniorHonourscourseMODERNOPTICS1andDIGIT ALIMAGEANALYSIS rangeofexamplesandmathematicalproofs,som eofwhicharefairlydif cult,particularlythepartsinitalic. Themathematicalproofsarenotinthemselvesa nexaminalpartofthelecturecourses, IntroductiontotheFourierTransformanditsA pplications byBracewelland MathematicalMethodsforPhysicsandEngineer ing byRiley, Hobson& many mathematical eldofscience,FourierTransformtheorydoesn othave a wellde :x;y!RealSpaceco-ordinatesu;v!Frequency Spaceco-ordinatesandlowercasefunctions(e g f(x)), beinga realspacefunctionanduppercasefunctions(e gF(u)), beingthecorrespondingFouriertransform,th us:F(u) =Fff(x)gf(x) =F 1fF(u)gwhereFfgis willbeusedtodenotep 1,it shouldbenotedthatthischaracterdiffersfro mtheconventionali(orj).

3 Thisslightlyoddconventionandistoavoidcon fusionwhenthedigitalversionoftheFourierT ransformis 0 1-10-5 0 5 10sinc(x)Figure1:Thesinc() specialfunctionswillalsobeemployed,these beingsinc()de ned2as,sinc(x) =sin(x)x(1)givingsinc(0) =13andsinc(x0) =0 atx0= p; 2p; : : :, asshownin gure1. ThetophatfunctionP(x), is givenby,P(x) =1forjxj 1=2=0else(2)beinga functionofunitheightandwidthcenteredabou tx=0, andis shownin gure2 0 1 0 1 2 Figure2:TheP(x)function2 TheFourierTransformThede nitionofa onedimensionalcontinuousfunction,denoted byf(x), theFouriertransformis de nedby:F(u) =Z f(x)exp( 2pu x)dx(3)2 Thesinc()functionis sometimesde nedwitha stray 2p, :10 September2007-4 FOURIERBOOKLET withtheinverseFouriertransformde nedby;f(x) =Z F(u)exp( 2pu x)du(4)whereit (x).

4 InthiscasetheFouriertransformcanbesepara tedtogive,F(u) =Fr(u) + F (u)(5)wherewehave,Fr(u) =Z f(x)cos(2pu x)dxF (u) = Z f(x)sin(2pu x)dxSotherealpartoftheFouriertransformis thedecompositionoff(x)intermsofcosinefun c-tions,andtheimaginaryparta frequency, forexampleiff(x)isa soundsignalwithxmeasuredinsecondsthenF(u )is itsfrequency spectrumwithumeasuredinHertz(s 1).NOTE: Clearly(u x)mustbedimensionless,soifxhasdimensions oftimethenu musthavedimensionsoftime oneofthemostcommonapplicationsforFourier Transformswheref(x)is a detectedsignal(forexamplea soundmadebya musicalinstrument),andtheFourierTransfor mis usedtogive rangeofusefulproperties,someofwhichareli stedbelow. Inmostcasestheproofofthesepropertiesis simpleandcanbeformulatedbyuseofequation3 Theproofsofmany :TheFouriertransformis a linearoperationsothattheFouriertransform ofthesumoftwo functionsis ,Ffa f(x) +b g(x)g=a F(u) +b G(u)(6)whereF(u)andG(u)aretheFouriertran sformsoff(x)andandg(x) :TheFouriertransformoftheComplex Conjugateofa functionis givenbyFff (x)g=F ( u)(7)4 Therearevariousde a frequency or angularfrequency.

5 Thedifferencebetweenthede nitionsareclearlyjusta scalingfactor. TheopticsanddigitalFourierapplicationsth e2pis usuallyde nedtobeinsidethekernelbutinsolidstatephy sicsanddifferentialequationsolutionthe2p constantis :10 September2007 FourierTransformSchoolofPhysicsFOURIERBO OKLET-5whereF(u)is theFouriertransformoff(x).ForwardandInve rse:We have thatFfF(u)g=f( x)(8)sothatif weapplytheFouriertransformtwicetoa function,wegeta that,F 1ff(x)g=F( u)(9)sothattheFourierandinverseFouriertr ansformsdifferonlybya :TheFouriertransformofthederivative ofa functionsis givenbyF df(x)dx = 2pu F(u)(10)andthesecondderivative is givenbyF d2f(x)dx2 = (2pu)2F(u)(11)Thispropertywillbeusedinth eDIGITALIMAGEANALYSISandTHEORYOFIMAGEPRO -CESSING coursetoformthederivative :ThePowerSpectrumofa signalis de nedbythemodulussquareoftheFouriertransfo rm,beingjF(u)j2.

6 Thiscanbeinterpretedasthepowerofthefrequ ency functionanditsFouriertransformobey theconditionthatZ jf(x)j2dx=Z jF(u)j2du(12)whichisfrequentlyknownasPar seval's Theorem5. Iff(x)isinterpretedata voltage,thenthistheoremstatesthatthepowe risthesamewhethermeasuredinreal(time),or Fourier (frequency) DimensionalFourierTransformSincethethree coursescoveredbythisbookletusetwo-dimens ionalscalarpotentialsorimageswewillbedea lingwithtwo willde nethetwo dimensionalFouriertransformofa continuousfunctionf(x;y)by,F(u;v) =Z Zf(x;y)exp( 2p(ux+vy))dxdy(13)withtheinverseFouriert ransformde nedby;f(x;y) =Z ZF(u;v)exp( 2p(ux+vy))dudv(14)wherethelimitsofintegr ationaretakenfrom ! 65 StrictlyspeakingParseval's TheoremappliestothecaseofFourierseries,a ndtheequivalenttheoremforFouriertransfor msis correctly, butlesscommonly, knownasRayleigh's theorem6 Unlessotherwisespeci edallintegrallimitswillbeassumedtobefrom !

7 SchoolofPhysicsFourierTransformRevised:1 0 September2007-6 FOURIERBOOKLETA gainfora realtwo dimensionalfunctionf(x;y), theFouriertransformcanbeconsideredasthed ecompositionofa (x;y)is consideredto beanimagewiththe brightness oftheimageat point(x0;y0)givenbyf(x0;y0), thenvariablesx;yhave ;vhave thereforethedimensionsofinverselength,wh ichis : Typicallyxandyaremeasuredinmmsothatuandv have areinunitsofmm di-mensionalsinusoidalspatialfrequency f(x;y) x = 2pu F(u;v)(15)andwithF f(x;y) y = 2pv F(u;v)(16)yieldingtheimportantresultthat ,F 2f(x;y) = (2pw)2F(u;v)(17)wherewehave thatw2=u2+v2. SothattakingtheLaplacianofa functioninrealspaceisequivalenttomultipl yingitsFouriertransformbya circularlysymmetricquadraticof dimensionalFourierTransformF(u;v), ofa functionf(x;y)is a separableoperation,andcanbewrittenas,F(u ;v) =ZP(u;y)exp( 2pvy)dy(18)whereP(u;y) =Zf(x;y)exp( 2pux)dx(19)whereP(u;y)istheFourierTransf ormoff(x;y)withrespecttoxonly.

8 Thispropertyofseparabilitywillbeconsider edingreaterdepthwithregardstodigitalimag esandwillleadtoanimplementationoftwo dimensionaldiscreteFourierTransformsin a functionf(~r)where~r= (x;y;z), thenthethree-dimensionalFourierTransform F(~s) =Z Z Zf(~r)exp( 2p~r:~s)d~rwhere~s= (u;v;w)beingthethreereciprocalvariablese achwithunitslength givenbyf(~r) =Z Z ZF(~s)exp( 2p~r:~s)d~sRevised:10 September2007 FourierTransformSchoolofPhysicsFOURIERBO OKLET-7 Thisis usedextensivelyinsolidstatephysicswheret hethree-dimensionalFourierTransformofa crystalstructuresis independentofthedimensionalityandmulti-d imensionalFourierTrans-formcanbeformulat edasa , whichissomewhatabstractlyde nedas:d(x) =0forx6=0Z d(x)dx=1(20)Thiscanbethoughtofasa very tall-and-thin spike withunitarealocatedattheorigin,asshownin gure3.

9 3 20 1123xd( )Figure3 : Thed-functionsshouldnotbeconsideredtobea nin nitelyhighspike ofzerowidthsinceit scalesas:Z ad(x)dx=awhereais a nota truefunctionintheanalysissenseandif oftencalledanimproperfunction. Therearea rangeofde nitionsoftheDeltaFunctionintermsofproper function,someofwhichare:De(x) =1eppexp x2e2 De(x) =1eP x 12ee!De(x) =1esinc xe 7 Thisis alsoreferredtoas~k-spacewhere~k=2p~sScho olofPhysicsFourierTransformRevised:10 September2007-8 FOURIERBOOKLET beingtheGaussian,Top-HatandSincapproxima tionsrespectively. Alloftheseexpressionshave thepropertythat,Z De(x)dx=18e(21)andwemayformtheapproximat ionthat,d(x) =lime!0De(x)(22)whichcanbeinterpretedasm akingany oftheabove approximationsDe(x)a very tall-andthin spike eldofopticsandimaging,wearedealingwithtw o dimensionaldistributions,soit isespeciallyusefultode netheTwo DimensionalDiracDeltaFunction, as,d(x;y) =0forx6=0 &y6=0Z Zd(x;y)dxdy=1(23)whichis thetwo dimensionalversionofthed(x)functionde nedabove, andinparticular:d(x.)

10 Y) =d(x)d(y):(24)Thisisthetwo ,thisfunctioncanbeconsideredasa singlebrightspotinthecentreofthe eldofview, forexamplea singlebrightstarviewedbya usedextensively, andhassomeuseful,andslightlyperculiarpro perties,it is functionf(x), beingintegrable,thenwehave thatZ d(x)f(x)dx=f(0)(25)whichis oftentakenasanalternative de functionmultipliedbyad-functionlocatedab outzerois justthevalueofthefunctionat theShiftingProperty, againfora functionf(x),giving,Z d(x a)f(x)dx=f(a)(26)whered(x a)is justad-functionlocatedatx=aasshownin dimensions,fora functionf(x;y), wehave that,Z Zd(x a;y b)f(x;y)dxdy=f(a;b)(27)whered(x a;y b)isad-functionlocatedatpositiona;b. Thispropertyiscentraltotheideaofconvolut ion,whichis usedextensivelyinimageformationtheory, Deltafunctionis canbeformedbydirectintegrationofthede nitionoftheFouriertransform,andtheshiftp ropertyinequation25above.


Related search queries