Example: bankruptcy

Chapter 3 Continuous Random Variables

Chapter 3 Continuous Random IntroductionRather thansummingprobabilities related to discrete Random Variables , here forcontinuous Random Variables , thedensitycurve isintegratedto determine (Introduction)Patient s number of visits,X, and duration of visit, =value of function,F(3) = P(Y < 3) = 5/12x , pmf f(x)probability (distribution): cdf F(x)probability less than = sum of probabilityat specific valuesP(X < ) = P(X = 0) + P(X = 1)= + = (X = 2) = , pdf f(y) = y/6, 2 < y < 4probability less than 3 = area under curve,P(Y < 3) = 5/12xprobability at 3,P(Y = 3) = 0probability less than = value of functionF( ) = P(X < ) = : Comparing discrete and Continuous distributions7374 Chapter 3. Continuous Random Variables (LECTURE NOTES 5)1.

continuous random variables, the density curve is integrated to determine probability. Exercise 3.1(Introduction) Patient’s number of visits, X, and duration of visit, Y.

Tags:

  Determine, Random

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of Chapter 3 Continuous Random Variables

1 Chapter 3 Continuous Random IntroductionRather thansummingprobabilities related to discrete Random Variables , here forcontinuous Random Variables , thedensitycurve isintegratedto determine (Introduction)Patient s number of visits,X, and duration of visit, =value of function,F(3) = P(Y < 3) = 5/12x , pmf f(x)probability (distribution): cdf F(x)probability less than = sum of probabilityat specific valuesP(X < ) = P(X = 0) + P(X = 1)= + = (X = 2) = , pdf f(y) = y/6, 2 < y < 4probability less than 3 = area under curve,P(Y < 3) = 5/12xprobability at 3,P(Y = 3) = 0probability less than = value of functionF( ) = P(X < ) = : Comparing discrete and Continuous distributions7374 Chapter 3. Continuous Random Variables (LECTURE NOTES 5)1.

2 Number of visits,Xis a (i)discrete(ii)continuousrandom variable,and duration of visit,Yis a (i)discrete(ii)continuousrandom (a)P(X= 2) = (i)0(ii) (iii) (iv) (b)P(X ) =P(X 1) =F(1) = + = (i)summation(ii)integrationand is a value of a(i)probability mass function(ii)cumulative distribution functionwhich is a (i)stepwise(ii)smooth increasingfunction(c)E(X) = (i) xf(x)(ii) xf(x)dx(d)V ar(X) = (i)E(X2) 2(ii)E(Y2) 2(e)M(t) = (i)E(etX)(ii)E(etY)(f) Examples of discrete densities (distributions) include (choose one or more)(i)uniform(ii)geometric(iii)hyperge ometric(iv)binomial (Bernoulli)(v) (a)P(Y= 3) = (i)0(ii) (iii) (iv) (b)P(Y 3) =F(3) = 32x6dx=x212]x=3x=2=3212 2212=512requires (i)summation(ii)integrationand is a value of a(i)probability density function(ii)cumulative distribution func-tionwhich is a (i)stepwise(ii)smooth increasingfunction(c)E(Y) = (i) yf(y)(ii) yf(y)dy(d)V ar(Y) = (i)E(X2) 2(ii)E(Y2) 2(e)M(t) = (i)E(etX)(ii)E(etY)(f) Examples of Continuous densities (distributions) include (choose one ormore)(i)uniform(ii)exponential(iii)nor mal (Gaussian)(iv)Gamma(v)chi-square(vi)stud ent-t(vii)FSection 2.

3 Definitions (LECTURE NOTES 5) DefinitionsRandom variableXiscontinuousifprobability density function(pdf)fis continuousat all but a finite number of points and possesses the following properties: f(x) 0, for allx, f(x)dx= 1, P(a < X b) = baf(x)dxThe(cumulative) distribution function(cdf) for Random variableXisF(x) =P(X x) = x f(t)dt,and has properties limx F(x) = 0, limx F(x) = 1, ifx1< x2, thenF(x1) F(x2); that is,Fis nondecreasing, P(a X b) =P(X b) P(X a) =F(b) F(a) = baf(x)dx, F (x) =ddx x f(t)dt=f(x).xacdf F(a) = P(X < a)density, f(x)abf(x) is positiveP(a < X < b) = F(b) - F(a)total area = 1_probability_probabilityFigure : Continuous distributionTheexpected valueormeanof Random variableXis given by =E(X) = xf(x)dx,thevarianceis 2=V ar(X) =E[(X )2] =E(X2) [E(X)]2=E(X2) 276 Chapter 3.

4 Continuous Random Variables (LECTURE NOTES 5)with associatedstandard deviation, = functionisM(t) =E[etX]= etXf(x)dxfor values oftfor which this integral value, assuming it exists, of a functionuofXisE[u(X)] = u(x)f(x)dxThe (100p)thpercentileis a value ofXdenoted pwherep= p f(x)dx=F( p)and where pis also called thequantile of order p. The 25th, 50th, 75th percentilesare also calledfirst,second,third quartiles, denotedp1= ,p2= ,p3= also 50th percentile is called themedianand denotedm=p2. Themodeis thevaluexwherefis (Definitions) the time waiting in line, in minutes, be described by the Random variableXwhich has the following pdf,f(x) ={16x,2< x 4,0, 1 231/31/22/3140 1 , cdf F(x)density, pdf f(x)probability less than 3 = area under curve,P(X < 3) = 5/12probability =value of function,F(3) = P(X < 3) = 5/12xxprobability at 3,P(X = 3) = 0 Figure : f(x) and F(x)Section 2.}

5 Definitions (LECTURE NOTES 5)77(a) Verify functionf(x) satisfies the second property of pdfs, f(x)dx= 4216x dx=x212]x=4x=2=4212 2212=1212=(i)0(ii) (iii) (iv)1(b)P(2< X 3) = 3216x dx=x212]x=3x=2=3212 2212=(i)0(ii)512(iii)912(iv)1(c)P(X= 3) =P(3 < X 3) =3212 3212= 06=f(3) =16 3 = (i)True(ii)FalseSo the pdff(x) =16xdetermined at some value ofxdoesnotdetermine probability.(d)P(2< X 3) =P(2< X <3) =P(2 X 3) =P(2 X <3)(i)True(ii)FalsebecauseP(X= 3) = 0 andP(X= 2) = 0(e)P(0< X 3) = 3216x dx=x212]x=3x=2=3212 2212=(i)0(ii)512(iii)912(iv)1 Why integrate from 2 to 3 and not 0 to 3?(f)P(X 3) = 3216x dx=x212]x=3x=2=3212 2212=(i)0(ii)512(iii)912(iv)1(g) determine cdf (not pdf)F(3).F(3) =P(X 3) = 3216x dx=x212]x=3x=2=3212 2212=(i)0(ii)512(iii)912(iv)1(h) DetermineF(3) F(2).

6 F(3) F(2) =P(X 3) P(X 2) =P(2 X 3) = 3216x dx=x212]x=3x=2=3212 2212=(i)0(ii)512(iii)912(iv)1because everything left of (below) 3 subtract everything left of 2 equals what is between 2 and 378 Chapter 3. Continuous Random Variables (LECTURE NOTES 5)(i) Thegeneraldistribution function (cdf) isF(x) = x 0dt= 0,x 2, x2t6dt=t212]t=xt=2=x212 412,2< x 4,1,x > other words,F(x) =x212 412=x2 412on (2,4]. Both pdf density and cdfdistribution are given in the figure above.(i)True(ii)False(j)F(2) =2212 412= (i)0(ii)512(iii)912(iv)1.(k)F(3) =3212 412= (i)0(ii)512(iii)912(iv)1.(l)P( < X < ) =F( ) F( ) =( 412) ( 412)=(i)0(ii) (iii) (iv)1.(m)P(X > ) = 1 P(X ) = 1 F( ) = 1 ( 412)=(i) (ii) (iii) (iv)1.(n)Expected average wait time is =E(X) = xf(x)dx= 42x(16x)dx= 42x26dx=x318]42=4318 2318=(i)239(ii)289(iii)319(iv) (MASS) # INSTALL once, RUN once (per session) library MASS mean <- 4^3/18 - 2^3/18; mean; fractions(mean) # turn decimal to fraction[1] [1] 28/9(o)Expected value of functionu= (X2)= x2f(x)dx= 42x2(16x)dx= 42x36dx=x424]42=4424 2424=(i)9(ii)10(iii)11(iv)12.)

7 (p)Variance, method in wait time is 2=V ar(X) =E(X2) 2= 10 (289)2=(i)2381(ii)2681(iii)3181(iv) (MASS) # INSTALL once, RUN once (per session) library MASS sigma2 <- 10 - (28/9)^2 ; fractions(sigma2) # turn decimal to fractionSection 2. Definitions (LECTURE NOTES 5)79[1] 26/81(q)Variance, method in wait time is 2=V ar(X) =E[(X )2] = (x )2f(x)dx= 42(x 289)2(16x)dx= 42(x36 56x254+784x486)dx=x424 56x3162+784x2972]42=(i)2381(ii)2681(iii) 3181(iv) (MASS) # INSTALL once, RUN once (per session) library MASS sigma2 <- (4^4/24 - 56*4^3/162 + 784*4^2/972) - (2^4/24 - 56*2^3/162 + 784*2^2/972)fractions(sigma2) # turn decimal to fraction[1] 26/81(r)Standard deviation in time spent on the call is, = 2= 2681 (i) (ii) (iii) (iv) (s)Moment generating (t) =E[etX] = etxf(x)dx= 42etx(16x)dx=16 42xetxdx=16etx(xt 1t2)]4x=2=16e4t(4t 1t2) 16e2t(2t 1t2), t6= 0.

8 (i)True(ii)Falseuse integration by parts fort6= 0 case: u dv=uv v duwhereu=x,dv= 3. Continuous Random Variables (LECTURE NOTES 5)(t) the distribution functionF(x) =x2 412, then medianm= whenF(m) =P(X m) =m2 412=12som= 122+ 4 (i) (ii) (iii) answerm is not in 2< x 4, som6= with thatf(x) ={ax2,1< x 5,0, 1 1 , cdf F(x) = P(X < x)density, pdf f(x)xxFigure : f(x) and F(x)(a)Find constanta. Since the cdfF(5) = 1, andF(x) = x1at2dt=at33]t=xt=1=ax33 a3=a(x3 1)3thenF(5) =a(53 1)3=124a3= 1,soa= (i)3124(ii)2124(iii)1124(b) determine (x) =ax2=(i)3124x2(ii)2124x2(iii)1124x2 Section 2. Definitions (LECTURE NOTES 5)81(c) determine (x) =a(x3 1)3=3124 x3 13=(i)3124(x3 1)(ii)2124(x3 1)(iii)1124(x3 1)(d) DetermineP(X 2).P(X 2) = 1 P(X <2) = 1 F(2) = 1 1124(23 1) =(i)61124(ii)117124(iii)61117(e) DetermineP(X 4).}

9 P(X 4) = 1 P(X <4) = 1 F(4) = 1 1124(43 1) =(i)61124(ii)117124(iii)61117(f) DetermineP(X 4|X 2).P(X 4|X 2) =P(X 4 X 2)P(X 2)=P(X 4)P(X 2)=61/124117/124=(i)116124(ii)117124(iii )61117(g)Expected value. =E(X) = xf(x)dx= 51x(3124x2)dx= 513x3124dx=3x4496]51=3 54496 3 14496=(i)11431(ii)11531(iii)11631(iv)117 31.(h)Expected value of functionu= (X2) = x2f(x)dx= 51x2(3124x2)dx= 513x4124dx=3x5620]51=3 55620 3 15620 (i) (ii) (iii) (iv) (i) determine 25th percentile (first quartile),p1= (x) =1124(x3 1), then,F( ) =1124( 1) = =14,and so 1244+ 1 (i) (ii) (iii) that value where 25% of probability is at or below (to the left of) this 3. Continuous Random Variables (LECTURE NOTES 5)(j) determine ( ) =1124( 1) = ,and so 124 + 1 (i) (ii) (iii) that value where 1% of probability is at or below (to the left of) this Random variableXhave pdff(x) = x,0< x 1,2 x,1< x 2,0, , cdf F(x) = P(X < x)density, pdf f(x)xxFigure : f(x) and F(x)(a)Expected value.

10 =E(X) = xf(x)dx= 10x(x)dx+ 21x(2 x)dx= 10x2dx+ 21(2x x2)dx=[x33]10+[2x22 x33]21=(133 033)+(22 233) (12 133)=(i)1(ii)2(iii)3(iv) 2. Definitions (LECTURE NOTES 5)83(b)E(X2).E(X2)= 10x2(x)dx+ 21x2(2 x)dx= 10x3dx+ 21(2x2 x3)dx=[x44]10+[2x33 x44]21=(144 044)+(2(2)33 244) (2(1)33 144)=(i)46(ii)56(iii)66(iv)76.(c)Varianc e. 2= Var(X) =E(X2) 2=76 12=(i)13(ii)14(iii)15(iv)16.(d)Standard deviation. = 2= 16 (i) (ii) (iii) (iv) (e) the distribution function isF(x) = 0x 0 x0t dt=t22]xt=0=x22,0< x 1, x1(2 t)dt+F(1) = 2t t22]xt=1+12= 2x x22 (2(1) 122) +12,1< x 2,1,x > (1) =12, so add12toF(x) for 1< x 2then medianmoccurs whenF(x) = m22=12,0< x 1,2m m22 1 =12,1< x 2,1,x > for both 0< x 1 and 1< x 2,m= (i)1(ii) (iii)284 Chapter 3. Continuous Random Variables (LECTURE NOTES 5) The Uniform and Exponential DistributionsTwo special probability density functions are discussed.


Related search queries