Example: barber

MCL -FX -2 / FX -3 - IEEE 802

IEEE 2011, Nov 9th 1. L Transmission Loss Multi-layer Material for High-Speed & High-Frequency Applications MCL-FX-2 / FX-3. Hikari Murai, Yasuyuki Mizuno, Hiroshi Shimizu, Takahiro Tanabe, Ken Ikeda and Tetsuro Irino Telecommunication Materials Development center Tsukuba Research Laboratory Printed Wiring Board Material R&D Dept. Printed Wiring Board Materials Business Sector IEEE2011. Roadmap of Infrastructure-Communication Network 2. Required Properties of Field Application Properties (Functions). Base Materials Servers Transmission Rate: Gbps 3 Gbps , Df:< Level General Routers 30 Layers 40 Layers Lead-Free applicable High- Narrow Pitch, Frequency Symmetrical Packaging Reflow Temp: 260 o C.

1 IEEE2011 Lowoowwow Transmission Loss Multi-layer Material for High -Speed & High -Frequency Applications MCL -FX -2 / FX -3 IEEE 2011, Nov 9th

Tags:

  Transmissions, Mcl fx 2 fx 3

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of MCL -FX -2 / FX -3 - IEEE 802

1 IEEE 2011, Nov 9th 1. L Transmission Loss Multi-layer Material for High-Speed & High-Frequency Applications MCL-FX-2 / FX-3. Hikari Murai, Yasuyuki Mizuno, Hiroshi Shimizu, Takahiro Tanabe, Ken Ikeda and Tetsuro Irino Telecommunication Materials Development center Tsukuba Research Laboratory Printed Wiring Board Material R&D Dept. Printed Wiring Board Materials Business Sector IEEE2011. Roadmap of Infrastructure-Communication Network 2. Required Properties of Field Application Properties (Functions). Base Materials Servers Transmission Rate: Gbps 3 Gbps , Df:< Level General Routers 30 Layers 40 Layers Lead-Free applicable High- Narrow Pitch, Frequency Symmetrical Packaging Reflow Temp: 260 o C.

2 Super Computers 10 Gbps Transmission Rate: 5 Gbps , Df:< Level High-End Giga bit Router 30 Layers 50 Layers Heat Resistance for Lead Free Base Station:Back panel Reflow Temp: 260 o C. RF modules for Halogen Free Materials applied Dk:< , Df:< Level Mobile Handset Devices Frequency: GHz 3 GHz High Thickness Accuracy (PA, Filter ,etc) 4 Layers 6 Layers, Higher Density Laser drill process ability Reflow Temp: 260 o C Heat Resistance(Lead Free). Halogen Free requirement Halogen free material Antenna of Base Station Frequency: GHz 3 GHz Dk:< , Df:< Level Phase Shifters, From Teflon & PPE boards Lower Process Cost Anti crash rader on to Lower Cost Materials Drift of electric property on automotive and etc Frequency: 24 GHz 76 GHz water absorption IEEE2011.

3 Property map of high frequency materials 3. Dk(1 GHz). 0. FX-3. Fx-2 Teflon Grade High-End Grade Dk / Df Df(1 GHz). JPCA-HCL01/21. IEC 61249-2-32/34. Middle-Range Grade Dk / Df JPCA-HCL02/22. Filled High Tg IEC 61249-2-31/33. Standard FR4. High Tg FR-4. JPCA TM001/IPC TM650 IEEE2011. Requirement of Material for High-Frequency PWBs 4. Important issue in high-frequency circuits Reducing transmission loss Stripline Transmission loss( a ) = Conductor loss( ac ) + Dielectric loss( ad ). f ad = Dk Df c Dk : dielectric constant, Df : Dissipation factor, f : Frequency, c : Light velocity b t w Propagation delay time Td =. Dk c b : Dielectric layer thickness w : Conductor width 60 4b t : Conductor thickness Characteristic impedance Zo = In Dk ( + t).

4 < Solution for Requirement >. / Reduction of ad Low Dk & Df Resin Technology (Excellent dielectric properties & Stable Dk &Df for the wide range of frequency, temperature, humidity, ..). / Reduction of ac Original Profile-Free Conductor (High adhesion technology for very low surface roughness foil). IEEE2011. Development Concept of New Resin System 5. < Structure model of cured new resin >. Non-polar & Rigid High Tg & High strength Linear polymer Hardener Low Dk & Low Df Thermosetting resin Low Df Inorganic filler Low Dk & Low Df Non-polar & Rigid Thermosetting resin system Liner polymer (Low-polar cross-linking design). Low Dk / Low Df Semi-IPN structure resin Low Dk / Low Df Stable Dk & Df by Original polymer alloy technology High Tg vs.

5 Temperature & Humidity Low water absorption High heat resistance Low Df Inorganic filler High heat resistance Good insulation reliability Filler/Resin Interface Control Low water absorption Low Df Low CTE. Novel high performance material IEEE2011. General Properties of New Material 6. PTFE/E-Glass Conventional Item Condition Unit FX-2. substrate FR-4. Dielectric Constant (Dk) 1 GHz * - - - - 1 GHz ** - - - - 3 GHz ** - - - - Dissipation factor (Df) 1 GHz * - - - - 1 GHz ** - - - - 3 GHz ** - - - - Copper peel strength (18 m) Standard (Rz: 5-7 m) - - - VLP (Rz: 3-4 m) kN/m - - - PF (Rz: 1 m) - - - o Glass transition temperature (Tg) TMA C 175 - 185 20 - 25 120 - 130. CTE xy 14 - 15 17 14 - 17.

6 Z1 ppm/ oC 48 - 55 100 - 110 50 - 70. z2 100 - 130 290 - 320 240 - 310. Heat resistance (T-288) IPC-TM-650 min > 60 - <3. Heat resistance PCT** -3 h - Good Good NG. (288 oC/20 s dipping) PCT** -5 h - Good Good NG. Water absorption PCT** -5 h % - - - CAF restraining property ** - h > 1000 - > 1000. Flammability UL-94 - V-0 V-0 V-0. o * IPC-TM-650 : Capacitance method with RF Impedance/Material Analyzer (25 C). ** JPCA-TM001 A test method for copper-clad laminates for printed wiring boards dielectric constanat and dissipation factor. o IPC-TM-650 : Triplate-line resonator method with Network Analyzer (25 C). o ** Moisture treatment condition: PCT (121 MPa). o ** TH/TH wall thickness: mm, Condition: 85 C/85%RH, 100 V dc applied IEEE2011.

7 Dielectric Properties (vs. Frequency) 7. < Measurement Conditions >. / Method:Triplate-Line Resonator by Vector Network Analyzer/JPCA TM001 / Temperature & Humidity: 25 oC / 60 %RH. / Laminate Thickness: mm (Signal-Ground Distance: mm), Copper foil:18 m / Signal Conductor Line Width: 1 mm Conventional FR-4. Conventional FR-4 FX-2. Dk Df FX-2. PTFE/E-glass PTFE/E-glass 0. 0 2 4 6 8 10 0 2 4 6 8 10. Frequency (GHz) Frequency (GHz). Excellent stability of dielectric properties in wide frequency bands IEEE2011. Dielectric Properties (vs. Frequency 1 to 30 GHz) 8. < Measurement Conditions >. / Method:Triplate-Line Resonator by Vector Network Analyzer/JPCA TM001 / Temperature & Humidity: 25 oC/ 60 %RH.

8 / Laminate Thickness: mm(Signal-Ground Distance: mm), Copper foil:18 m / Signal Conductor Line Width: 1 mm FX-2. FX-2. Dk Df 0. 0 5 10 15 20 25 30 0 5 10 15 20 25 30. Frequency (GHz) Frequency (GHz). IEEE2011. 9. Resin / Glass Fabric Effect of Dk/Df 8 7.. E Glass 6. Epoxy/Dicy Curing 5 . Low Dk Glass . Dk Df 4. Epoxy/Dicy Curing 3 PTFE . Low Dk Glass . 2 . E Glass . PTFE. 1 0. 1M 10M 100M 1G 10G 1M 10M 100M 1G 10G. Freqency: Hz Frequency: Hz Glass Fabric Data by suppler IEEE2011. Dk & Df of new material 10. Relationship between Dk&Df and resin content of laminates Measurement Conditions . / Method Triplate-Line Resonator by Vector Network Analyzer (JPCA tm001 ). / Temperature & Humidity 25 / 60 %RH.

9 / Laminate Thickness mm (Signal/Ground: 800 m apart), Copper foil . 18 m / Signal Conductor Line Width 1 mm (Zo: ca. 50 ). Conventional FR-4. Conventional FR-4. Low Dk Epoxy Dk (1 GHz). (1 GHz). Df(1 GHz). Dk(1 GHz). Low Dk Epoxy Df Current Low Dk Current Low Dk FX-2. FX-2. 0. 50 55 60 65 70 75 80 85 90 50 55 60 65 70 75 80 85 90. Resin Content(vol%) Resin Content(vol%). IEEE2011. Filler/Resin-Composite Technology(1) 11. Interface Control between Filler and Resin (FICS). Matrix resin Inorganic Filler Optimization of filler / resin-interface Aggregation High Dispersion & Excellent adhesion / Increase in water absorption / Low water absorption / Poor heat resistance / Excellent heat resistance / Poor electric insulation and CAF restraining property / Excellent electric insulation and CAF restraining property IEEE2011.

10 Filler/Resin-Composite Technology(2) 12. Effect by Optimal Interface Control on Df of the Cured Resin Df of the cured resin after PCT. < Cross section of cured resin >. Untreated Filler PCT-5h). (1 GHz). Df after Df(1 GHz, Optimally treated Excellent dispersion & adhesion Water Abshorption Water absorption (%, after PCT-5 h). (mass% after PCT-5h). IEEE2011. 13. Dk, Df Deviation Analysis (- Filler size impact). F value 221. Dk Df Conventional Filler used F value Frequency GHz Frequency GHz F value 363. Df Smaller particle Dk filler used F value Frequency GHz Frequency GHz Dk Standard Dev. of small filler is 22% lower than that of conventional Df Standard Dev. of small filler is 18% lower than that of conventional IEEE2011.


Related search queries