Example: confidence

NP-complete problems - People

Ndingshortestpathsandminimumspanningtree singraphs, matchingsinbipartitegraphs, maximumincreasingsub-sequences, maximum owsinnetworks, cient, becauseineach casetheirtimerequirementgrowsasa polynomialfunction(such asn,n2, orn3) ofthesizeof betterappreciatesuch ef cientalgorithms, considerthealternative:Inalltheseprob-le mswearesearchingfora solution(path,tree, matching, etc.)fromamonganexponentialpopulationofp ossibilities. Indeed,nboyscanbematchedwithngirlsinn!di fferentways, agraphwithnverticeshasnn 2spanningtrees, anda typicalgraphhasanexponentialnum-berof pathsfromstot. Alltheseproblemscouldinprinciplebesolved inexponentialtimebycheckingthroughallcan didatesolutions, onebyone.

nential algorithms make polynomially slow progress, while polynomial algorithms advance exponentially fast! For Moore’s law to be reected in the world we need efcient algorithms. As Sissa and Malthus knew very well, exponential expansion cannot be sustained in-denitely in our nite world. Bacterial colonies run out of food; chips hit the ...

Tags:

  Complete, Problem, Algorithm, Np complete problems

Information

Domain:

Source:

Link to this page:

Please notify us if you found a problem with this document:

Other abuse

Transcription of NP-complete problems - People

1 Ndingshortestpathsandminimumspanningtree singraphs, matchingsinbipartitegraphs, maximumincreasingsub-sequences, maximum owsinnetworks, cient, becauseineach casetheirtimerequirementgrowsasa polynomialfunction(such asn,n2, orn3) ofthesizeof betterappreciatesuch ef cientalgorithms, considerthealternative:Inalltheseprob-le mswearesearchingfora solution(path,tree, matching, etc.)fromamonganexponentialpopulationofp ossibilities. Indeed,nboyscanbematchedwithngirlsinn!di fferentways, agraphwithnverticeshasnn 2spanningtrees, anda typicalgraphhasanexponentialnum-berof pathsfromstot. Alltheseproblemscouldinprinciplebesolved inexponentialtimebycheckingthroughallcan didatesolutions, onebyone.

2 Butanalgorithmwhoserunningtimeis2n, orworse, is allbutuselessinpractice(seethenextbox).T hequestforef cientalgorithmsis about ndingcleverwaystobypassthisprocessofexha ustivesearch,usingcluesfromtheinputinord ertodramaticallynarrowdownthesearch thisquest,algorithmictech-niquesthatdefe atthespecterofexponentiality:greedyalgor ithms, dynamicprogramming,linearprogramming(whi ledivide-and-conquertypicallyyieldsfaste ralgorithmsforproblemswecanalreadysolvei npolynomialtime).Nowthetimehascometomeet thequest's mostembarrassingandpersistentfailures. We shallseesomeother search problems , inwhichagainweareseekinga solutionwithparticularpropertiesamongane xponentialchaosofal-ternatives.

3 Butforthesenewproblemsnoshortcutseemspos sible. Thefastestalgorithmsweknowforthemarealle xponential ,thegameofchesswasinventedbytheBrahminSi ssatoamuseandteach hisking. Askedbythegratefulmonarch whathewantedinreturn,thewisemanrequested thatthekingplaceonegrainofriceinthe rstsquareofthechessboard,twointhesecond, fourinthethird,andsoon,doublingtheamount ofriceuptothe64thsquare. Thekingagreedonthespot,andasa resulthewasthe rstpersontolearnthevaluable -albeithumbling lessonofexponentialgrowth. Sissa's requestamountedto264 1 = 18;446;744;073;709;551;615grainsofrice, enoughricetopaveallofIndiaseveraltimesov er!

4 Allovernature, fromcoloniesofbacteriatocellsina fetus, weseesystemsthatgrowexponentially fora while. In1798,theBritishphilosopherT. RobertMalthuspublishedanessay inwhich hepredictedthattheexponentialgrowth(heca lledit geometricgrowth )ofthehumanpopulationwouldsoondepletelin earlygrowingresources, anargumentthatin uencedCharlesDarwindeeply. , , ,moderatedtoa doublingevery18monthsandextendedtocomput erspeed,is knownasMoore's Andthesearethetworootcausesoftheexplosio nofinformationtechnologyinthepastdecades :Moore's lawandef 's lawprovidesa disincentivefordevelopingpolynomialal-go rithms.

5 Afterall,if analgorithmisexponential,whynotwaitit outuntilMoore's lawmakesit feasible?Butinrealitytheexactoppositehap pens:Moore's law is a hugeincen-tivefordevelopingef cientalgorithms, becausesuch algorithmsareneededinordertotakeadvantag eof If, forexample, anO(2n)algorithmforBooleansatis ability(SAT) weregivenanhourtorun,it wouldhavesolvedinstanceswith25variablesb ack in1975,31vari-ablesonthefastercomputersa vailablein1985,38variablesin1995,andabou t45variableswithtoday's machines. Quitea bitofprogress exceptthateach extravariablerequiresayearanda half's wait,whiletheappetiteofapplications(many ofwhich are, ironically, re-latedtocomputerdesign)growsmuch faster.

6 Incontrast,thesizeoftheinstancessolvedby anO(n)orO(nlogn)algorithmwouldbemultipli edbya factorof about100each (n2) algorithm ,theinstancesizesolvableina xedtimewouldbemul-tipliedbyabout10each decade. EvenanO(n6) algorithm ,polynomialyetunappe tizing,wouldmorethandoublethesizeofthein stancessolvedeach decade. Whenit comestothegrowthofthesizeofproblemswecan attack withanalgorithm,wehavea reversal:expo-nentialalgorithmsmakepolyn omiallyslowprogress, whilepolynomialalgorithmsadvanceexponent iallyfast!ForMoore's law tobere ectedintheworldweneedef ,exponentialexpansioncannotbesustainedin -de nitelyinour ; 's law willstopdoublingthespeedof ourcomputerswithina decadeortwo.

7 Andthenprogresswilldependonalgorithmicin genuity orotherwiseperhapsonnovelideassuch asquantumcomputation, Dasgupta, , Vazirani249 Satis abilitySATISFIABILITY, orSAT( ),is a problemofgreatpracticalimportance, withapplicationsrangingfromchiptestingan dcomputerdesigntoimageanaly-sisandsoftwa reengineering. It is alsoa 's whataninstanceofSATlookslike:(x_y_z) (x_y) (y_z) (z_x) (x_y_z):ThisisaBooleanformulainconjuncti venormalform(CNF). Itisa collectionofclauses(theparentheses),each consistingofthedisjunction(logicalor, denoted_) ofseveralliterals,wherea literaliseithera Booleanvariable(such asx) orthenegationofone(such asx).

8 Asatisfyingtruthassignmentisanassignment offalseortruetoeach variablesothateveryclausecontainsa literalwhosevalueistrue. TheSATproblemis thefollowing:givenaBooleanformulainconju nctivenormalform,either nda , settingallvariablestotrue, forexample, satis truthassignmentthatsatis esallclauses?Witha littlethought,it isnothardtoarguethatinthisparticularcase nosuch truthassignmentexists. (Hint: Thethreemiddleclausesconstrainallthreeva riablestohavethesamevalue.) Buthowdowedecidethisingeneral?Ofcourse, wecanalwayssearch throughalltruthassignments, onebyone, butforformulaswithnvariables, thenumberofpossibleassignmentsis exponential, typicalsearch problem .

9 We aregivenaninstanceI(thatis, someinputdataspecifyingtheproblemathand, inthiscasea Booleanformulainconjunctivenormalform),a ndweareaskedto ndasolutionS(anobjectthatmeetsa particularspeci cation,inthiscaseanassignmentthatsatis eseach clause).If nosuch solutionexists, wemustsay cally, a search problemmusthavethepropertythatanypropose dsolutionStoaninstanceIcanbequickly checkedforcorrectness. Whatdoesthisentail?Foronething,Smustatle astbeconcise(quick toread),withlengthpolynomiallyboundedbyt hatofI. Thisis clearlytrueinthecaseofSAT, forwhichSis anassignmenttothevariables. To formalizethenotionof quick checking, wewillsay thatthereis a polynomial-timealgorithmthattakesasinput IandSanddecideswhetherornotSis a solutionofI.

10 ForSAT, thisis easyasit justinvolvescheckingwhethertheassignment speci edbySindeedsatis willbeusefultoshiftourvantagepointandtot hinkof thisef cientalgorithmforcheckingproposedsolutio nsasde ningthesearch :Asearch problemis speci edbyanalgorithmCthattakestwoinputs, aninstanceIanda proposedsolutionS, andrunsintimepolynomialinjIj. We saySisasolutiontoIif andonlyifC(I;S) = problem ,researchersoverthepast50yearshav etriedhardto ndef cientwaystosolveit,butwithoutsuccess. ,interestingly, therearetwonaturalvariantsofSATforwhich wedohavegoodalgo-rithms. If allclausescontainatmostonepositivelitera l,thentheBooleanformulais , showninbold, , anda satisfyingtruthassignment,if oneexists, , if allclauseshaveonlytwoliterals, thengraphthe-orycomesintoplay, andSATcanbesolvedinlineartimeby ndingthestronglyconnectedcomponentsof a particulargraphconstructedfromtheinstanc e( ).


Related search queries